Helpin' Red

Licence: CC BY NC SA- You can copy, change and distribute. Copies and derivative work must have the same
licence, not be commercial and give original work credit.

Table of contents

03 0110 = e 4
D701 11] (o =T £ P 5
gL o T LT RPN 7
HR conventions and NOatioNSccuiieiiiiiiiiiic e 9
Getting Startedcvieii i e 10
=0 =T |1 (o PP 13
Setup - Visual STUAIO ..cuuveniiicei e 18
"Hello world" - run and cOmMPileceoveiiiii e 20
BUIIE-IN NEIP e 28
NOEES ON SYNEAX 1uiviiiieiiiiiiiir s s s s s e s s e s r e e sanes 31
(6] o 1AV 0] e KPP RPRP 34
EVAlUGLION Loeiie i e 38
Some pitfalls of Red [€arningcocuiviiiiiiii e 43
Console input and OULPULiviiiii e 44
2] T 1 o 1 e/o o = PN 46
NS 0] oo T [e/o o [PP 48
DaAtalYPES . uvii i e 50
Hash!, vector! and mMap!c.oveiiiii e e e 58
Other datatyPes ..vuieie i e 61
Datatype CONVEISION ..uuvuiiiiiiiiiiiiiieirr s r s s r s e s s e eas 65
Accessing and formatting datacoveeiiiiiiiii 67
Math @Nd [0GIC ..euuieiii i 73
L@ L a1 gl 0= 1 PP 85
(@Y o] 10T =T o 1V 89
BlOCKS & SEIIES ...evuieiiiiiiii et r e s e s e e s e e raa e ean 91
Y= =S 4= Y/ L = Lo] o PRSP 94
SErIES GO rS et it e, 99
Series "Changers" ... e e 107
(0] 0/ 3 T P 118
e To] o T PP 120
BranChingcce i e 123
String and text Manipulation ..o 128
Printing special CharaCters ..o e 134
Time and tiMING ..vvuieiii e 136
Error handling ...o..ceeie i 139
FIlES o eerie e e arn e 141
WHItING 1O fIl@S .vnvvnieeiee e e 145
REAAING fIlES ruiuiiii i 148
B Tt 0 P 150
(@] o) =0 PP 157
Reactive programmingic.ieieieieniiirr s 161
L@ ST 01=] = ol PP 164

TP 170
(@0 7= [[T < T T 175
=) Yo 10 oo .01 .4 = [o PP 180
= 10 =P 185
EVENTS @NA ACLOIS .iiviieiiiie e e e a e e 206
Event! mouse position and key pressedvivviiiiiiiinin s 211
AdVaNCed tOPICS ..uiviiiiiiiii i 214
RICN EEXE eeiei e e aa e 223
Create views progammatiCallyoveieriiiiiiiiiii e 227

o T PPN 230
D1 10T [11 o I o= == PP 232
MatCNING ceeeeii e 234
Ordered CROICESivuiiriiiieee e r e e s e r s e a s eaeen 240
Repetition and Matching LOOPSuivuiirieiiiiiiiierrisesee e er e sn e e a e e e 243
1Yo T Te T] o 10 | O PSPPI 248
4 ToTa 13771 T T a] o] U | PP 252
(@o] 11 o] I [0 1 AP PPPR 254
Parse usage - Validate inpULSccvviiiiiiiiiii e 256
Parse usage - EXtract datacovveiiiiiiiiiiie e 259
Parse usage - Manipulating texXtcoiiiiiiii 262
ParSe lINKS ..uiveiiiiiiii e 264

D] 7= PP 265
LiNg PrOPEITIES ..vuieieii i 274
Color, gradients and patternsccoveoiiiiii i 277
2D TraNSfOIMS cuuie i 285
Shape sub-dialeCtccuuiinii 296
Programmatic drawing and Animationc.ccovviiiiiiiiinees e e 307

What s in Msystem” ... e 316

Appendix I -While we wait for serial port...c.oveviiiiiii 319

Appendix II -While we wait for full CGL..ccoiiiiiiii e 326
Installing and configuring Cheyennecoiviiiiiiiiiii e 328
RSP -"Hello WOrld" ..o e e 333
RSP -Request and RESPONSEvvuiiiiiriiiiiiiisi s s e s e s e e ena e 335
CGI -"Hello WOrld" ...eeeeee e e e e eas 339
CGI -Processing Web fOrmsovuiieiiiiiis e 341
CGI USING REA ..eiieiiiiiiii i e e e r e e e aeaenns 344

Appendix III -MQTT USING REAuiiniiiiiiiiic e e 346

5

Helpin'Red

Help, tutorials and examples for the Red programming language

Thrown together by Ungaretti. Still evolving...

Version 1.7 Built: 1/27/2019 6:39 AM
You may download the contents of this website in PDF, MS-Word and Windows
Help App formats.

Check the downloads page. There you will also find the Rededitor, a fool-proof
editor that runs your scripts with just one click.

Czech translation by Tovim.
Traducéo para portugués - Portuguese translation.
Suggestions, corrections and collaborations are most welcome!! Post them

at https://gitter.im/red/docs @ungaretti, or send a private message there
@ungaretti.

This work is created using HelpNDaoc software.

You may copy, distribute and use to create derivative works, but you can't make any
commercial use or profit from it or any derivative work. Any derivative work must have the same license and
give proper credit to this original work.

Next topic >

https://www.red-lang.org/
http://helpin.red/cs/index.html
http://helpin.red/pt/index.html
https://gitter.im/red/docs
https://www.helpndoc.com/

iPhone web sites made easy

Downloads
File: Size: MD5 Hash (see below how to check it)
REDEDITOR 1.1 *** 3432665 FDD67784B883CFADACDD2F9AECB980A5

Run a Red script by pressing "play"
button!

New! Compile options added!

helpin.red in PDF format - -

helpin.red in MS Word format - -

%

helpin.red in Windows Help app *x
(Chm) *

helpin.red HelpNDoc project - -

* Help app (Chm) may raise issues with firewalls and anti-virus softwares! Also, to make it
work, you must right-click on the downloaded file, chose properties and check "unblock".

** It's a pain to change the hash every time | want to update Helpin'Red website, and there
are virtually no downloads of this, so I'll update the .chm file, but | won't update the hash
anymore. if you want a safe download, contact me at gitter.

*** Rededitor and Makeshift IDE are zip files that contains executables (Notepad++ and
Red), so it may also raise issues with firewalls and anti-virus. The hash and size are for the
zip archive.

| certainly don't add malware to my files, but who knows what hackers might do, so, just to
be sure, | add the size and the MD5 hash of Rededitor. | know MD5 is not the safest hash,
butitis small, and along with the size of the file should make you sure enough that the file
you're downloading is the same files | created. Hash is not needed for PDF or Word, and |
can't add a hash for the HelpNDoc project as it would change the moment | write it down in
this page.

To find the size and the MD5 hash of a file, run the Red script below. It opens a GUI file
selector, so itis pretty easy to use.

https://www.helpndoc.com/feature-tour/iphone-website-generation
http://helpin.red/Rededitor-11.zip
http://helpin.red/Helpin' Red.pdf
http://helpin.red/Helpin' Red.docx
Helpin' Red.chm
Helpin' Red.chm
http://helpin.red/Helpin' Red.hnd

Red []

a: request-file

prin "Hash= " print checksuma ' MD5
prin "Size= " print size? a

You may even type it at the console:

>> b: request-file ; the GUI file selector
opens here
== %/C/Users/André/Documents/mytestfile.txt

>> print checksum b 'MD5
#{EO54964EFB5ECAASBF89164B988A62F7}

>> print size? b
2574

< Previous topic Next topic >

Helpin' Red

Produce Kindle eBooks easily

Introduction

About Red

¢ Both Red and Red/System are published under the BSD license. The runtime is
published under the BSL license.

e Red is a programming language that fits in a single executable file with about 1MB. No
install, no setup.

¢ Red is free and open-source.

e Red is interpreted, but can compile you code and generate single standalone
executables.

¢ Red does some compiling before interpreting, and so turns out to be quite fast.
e Red is simple. Its code is clean and has no bloat at all.
e Red is under development (alpha) as of october 2018, but aims at:

o being multi-plataform;

o having cross-platform native GUI system, with a Ul dialect and a drawing
(graphics) dialect;

o being a full-stack programming language, that is, from very low to very high level.

e Red is the open-source evolution of Rebal. If you want to try some of the features that
are not yet available in Red, you should download Rebol and try it. However, Red is the
future.

¢ Red is being developed by a group of people led by Nenad Rakocevic.

e Recently, Red raised substantial funds from an ICO and a Red Foundation was set up
in Paris, France, so it's here to stay.

A taste of Red:

Red [needs: view|
view [
fl. field "First nane"
f2: field "Last nane"
button "G eet Me!" |
tl/text: rejoin ["Have a very nice day " fl/text " " f2/text

71349

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://opensource.org/licenses/bsd-3-clause
https://www.boost.org/users/license.html
http://rebol.com/
https://ico.red-lang.org/

Helpin' Red

Il!ll]
]
return
t1l: text "" 200

A Red: untitled — *

| Andre | | Ungaretti Greet Me!

Have a very nice day Andre Ungaretti!

If 1 got you interested, you should really take a look at Short Red Examples, by Nick
Antonaccio.

About this work:

This is an evolution of the Red Language Notebook.
I chose to use HelpNDoc software to develop a more friendly and useful interface.

Notes:

e |use Windows, so this work is based on this Operating System.

e I'm not an experienced or even a good Red programmer, in fact, I'm not a programmer
at all.

e Englishis not my native language.

e This isn'ta complete reference for the Red language (yet?).

e |did not use the best coding style in many examples. Please, take a look at Red's

coding style guide.
e |tryto make my work original, but some text was copied and pasted from Red's
official documentation and | based some examples on what | found at:

o red-by-example.org by Arie van Wingerden and Mike Parr
o mycode4fun.com.uk by Alan Brack
o redprogramming.com by Nick Antonaccio

Also, a lot of help came from the Red community at gitter.im/red/home. Thank You all!!!

e Ifyou can'tfind something on the existing Red Documents, there is
always www.rebol.com.

< Previous topic Next topic >

8 /349

http://redprogramming.com/Short Red Code Examples.html
https://www.gitbook.com/book/ungaretti/red-language-notebook/details
https://www.helpndoc.com/
https://doc.red-lang.org/v/v0.6.0/Coding-Style-Guide.html
https://doc.red-lang.org/v/v0.6.0/Coding-Style-Guide.html
http://www.red-by-example.org/index.html
https://ungaretti.gitbooks.io/red-language-notebook/content/www.red-by-example.org
https://ungaretti.gitbooks.io/red-language-notebook/content/www.red-by-example.org
http://www.mycode4fun.co.uk/red-beginners-reference-guide
http://redprogramming.com/Home.html
https://gitter.im/red/home
http://www.rebol.com/docs.html
http://www.rebol.com/docs.html

Easily create EPub books

Helpin'Red conventions and notations

1- Syntax highlight and scripts

[find that syntax highlight is very helpful for beginners as there are so many predefined
words in Red and its code is so concise. Whenever possible | use syntax highlighted code
taken from Notepad++1,

Red []

a. "Hello"

b: 123

c: [33 "fox"]
print c

[1] - To copy and paste highlighted code from Notepad++ | use a plugin called NppExport.

The console output is represented by a gray background. When examples are given as
console-typed commands, | highlight the user-typed input using bold typeset. This can
avoid confusion, as sometimes you may want to copy and paste text from the examples,
and it may not work as expected.

>> ¢ ["Cat" "dOg" II_FOXII "COW" ll_Flyll llantll "bee"]
- ["Cat" "dOg" ll_FOX" "COW" ll_Flyll "ant" llbeell]

| also add a line between commands to make it more readable, and sometimes comments
and colored highlights. These are added by me during edition, so be careful when copying
and pasting.

>> a: make hash! [a 33 b 44 c 52]
== make hash! [a 33 b 44 c 52]

;this empty line doesn't exist in the console
>> select a [c]
== 52

;this empty line doesn't exist in the console
>> select a 'c
== 52 ;comments and highlights are added by me

later, during edition

< Previous topic Next topic >

https://www.helpndoc.com/feature-tour

Helpin' Red

Free Web Help generator

Getting started

The first thing is, of course, to download the Red executable. You may get the latest version
from here.

When you execute it (double click), it simply opens the console (a.k.a. REPL) on your
desktop.

Instructions on how to run scripts are described at the "Hello world" - run and compile
chapter, but first, I think you should choose a text editor.

Choose an editor

You may just write your scripts on any text editor that outputs pure text files, like Notepad,
then download the Red executable from Red's website and run them using the command
line, but that is not very friendly. There are quite a few options that will make it much easier.
Please take a look at Rededitor.

Red's website suggests:

e Visual Studio Code with Red extension .

e Browser-based Cloud9 editor (setup instructions for Red).

| add Notepad++ to these suggestions, because it's a lightweight, very popular editor. Red
prides itself for being a single-file with no install and no setup. Well, if you like that about
Red, you will appreciate using Notepad++, specially if configured as Rededitor.

Throughout this work | use Notepad++ (Rededitor).

I also made a chapter about setting up Visual Studio Code. It's a more complete editor for
programming, with many features that Notepad++ doesn't have.

10/ 349

https://www.helpndoc.com
https://www.red-lang.org/p/download.html
https://www.red-lang.org/p/download.html
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=red-auto.red
https://aws.amazon.com/cloud9/?origin=c9io
https://github.com/red/red/wiki/Install-Red-in-Cloud9-IDE
https://notepad-plus-plus.org/download/v7.5.6.html

Helpin' Red

1 O s Syl Do eDviosh s et e = Ry lepasd v - a B @) bpFirrtrad - Vi Sudin Ceda - o "
Eiv Edt Smarch e fpocdng Lengusge Sefng Toeh hisce fun indow 2 & Vs G0 [eug Tmks Help
+EHE fMR(DC MR ax|EBE %1 ERBlu® iEPE@ .
[Bleclectna: |[= [| = Trn—re| | || - [R = —— ey
]
lins om0 EOwED
Lhar Diefin Fi fangth: 188 ez Ln:9 Cel:i Salzbjn Windasa (CALF) UTF 3

Notepad++ Visual Studio

Some information you may find useful:

The first time it runs, Red creates files at C: \ProgramData\Red\ . If you install a new release
or built of Red, ladvise you to wipe out the files in that directory, otherwise, unless you
specify the path to the new release, Windows will keep using the old release as default.

A Red scriptis a pure text file. It may have any extension, but its a good idea to give them a
.red extension, as later, when you use text editors, you will want them to recognize the
language you are using. You will probably also want Windows to associate files with .red
extension to the Red executable. The easiest way to do that is to right click on a text file
with .red extension and choose "Open with/Choose another app":

il mqr Open RED File 1 KB
my Open with Geany : T
ﬂm:ld -'-.EIF > ol
o 1 RED File 1 KE
. . CRC 5HA »
hbF " 5 53 Tesxt Docurment F:
y |l Edit with Mategads «
‘ myf O File B
My EX Move to Dropbox 2 p— [ro— 1 KB
o myE 3 Scan with Windows Defender...
&l my @ Eraser >
. T s -
MY~ g2 Share - e
Mo .)
E Open with > = Motepadss : afree (GHU) source code editor
o
4 . 5 | @l REBOL/Pro SOK System
nair :
il onc Restore previous versions [] REBOL/View System
=)q Visual Studie Code
= play Send to >
. poh oot E Search the Store
@ proj - Chaoose another app
&l s oy |. —r—r YT

Then navigate to "Look for another app on this PC", check the "Always use this app to
open .red files" box, click on "Look for another app on this PC" and select your Red
executable. Every file with extension .red will be associated with the Red executable now.

11/ 349

E Windows Photo Viewer

WardPad

¢ o/ Always use this app to open .red files

L*]

OK

Helpin' Red

RED File
Text Doce
RED File
Applicat
RED File
RED Fale
GIF File
RED File
CO File
Applicats
Applicat

Applicativ

< Previous topic

Next topic >

12 /349

Easy to use tool to create HTML Help files and Help web sites

Rededitor

For Windows, but works surprisingly well in Linux using Wine.

Everything you need to get started with Red, including Red
itself!
Just press the play button to run your script! *

Ch\Rededitor-11examples\0- Basics and G... — O >
[=] 01 - Hellowordd red E3 l
1 Eed [needs: wview]]
3 view [text "Hello World™
4 button "Quit™ [guoit]

*the very first run may take a while as the Red executable compiles the GUI console.

After much trial and error with Notepad++ configuration, | came up with a setup that is
clean, lean, and allows you to save & run a Red script by simply pressing a "play” button.

It has all the nice features of Notepad++, plus syntax highlight for Red and the necessary
plugins. Everything is packed in a zip file along with a copy of the Red executable. This zip
extracts to a folder that is portable and self-sufficient, meaning you can clone it just by
coping and pasting.

| called this package, very creatively, Rededitor. You can get it in the Downloads page.

B . Save and run - interpreted mode.

@ - New

i Open

https://www.helpndoc.com/help-authoring-tool

Helpin' Red

= - Save
- Save as...

£ Development quick compile with DLL - Saves, compiles and run your script.
Compiles with -c option (look at this chapter), meaning that compilations are fast
(except for the very first one as Red takes about a minute to create the DLL and some
support files).

B Release compile to standalone exe - Saves, compiles and run your script.
Compiles with -r option (again, look at this chapter), meaning that creates a
standalone executable file. Always takes about a minute to compile.

Isuggestyoutick onSet t i ngs/ Pref erences. ../ Hi de nenu bar to make itlook
even cleaner, like the screenshot above. You can toggle the menu bar back by pressing the
alt key or F10. |don't make the hidden menu default because it might be confusing

After downloading of the zip, extract the Rededitor folder. Inside you will have this:

Marme Date modified Type
You will find some sample code here
backup 31/10/2018 18:49 File folder
exarnples J 31072018 16:46 File folder
myprograms €———— 5Store your 31/10/2018 18:58 File folder
plugins scripts here 31/10/2018 16:46 File folder
D change.log 18/03/2018 23:32 Text Document
D cenfig.amnl 311072013 19:21 AML Document

D contexthenu.xml
D dolecalConf.xml

26/00/2016 17:37
15/05/2015 22:36

KML Docurment
XML Document

T —— Ll 27/02/201801:21 XML Document
D langs.xml S 2770272018 01:21 AML Document
D license.tut 30/10/2013 12:07 Text Document

D readme.bet 30/10/2013 1207 Text Docurnent
@l red.exe 30/10/2018 20:42 Application

E REDEDITOR.exe 18/03/2018 23:40 Application

D Red-lang.xml H 18/04/2012 12:00 XML Document
Scilexer.dll Rededitor - | suggest 18/03,/2018 23:40 Application extens

D session.xml

D shortcuts.xml

you make a shortcut
on desktop

D stylers.model.xml

D stylers.xml

D userDefinelang.xml

Notes:

31/10/201819:21
30/10/2018 21:27
20/08/2017 01:24
09/04/2018 00:05

31/10,2018 1627

14 /349

XML Document
AML Document
XML Document
AML Document
XML Document

Helpin' Red

Remember to regularly update the Red interpreter with the latest Red release, renamed

to "red.exe".

The compiling features, ® and i (not the "Save and run") have issues with some

characters in the path. They do not work, for example, on my "André" folder, | get:
"'Cannot access source file: C:\Users\Andr |® \Documents\Rededitor\myprograms\helloworld.red." SO, pay attention

where you place your Rededitor if you want it to compile scripts.

The run and compile features are also available in the Macro menu:

E CARededitor- 1 1heamples\0- Basics and GUMNDT - Helloworld.red - Motepads +
File Edit S5earch View Enceding Language Settings Tools

?

'o.,|=|ti|:lr: BE P

= 01 - Helloweorld red E3] P ayback Ctrl+ Shift+P
1 Eed [needs: wieaw] Save Current Recorded Macro...
- Run a Macra Multiple Times...
3 l:'il'.l{‘.‘w [Cext "Hcllo World"™
1 button "Juit™ [quit] Trim Trailing Space and Save Alg+Shift-5

Macre FRun

Plugins

Start Recording

stop Kecording

O x
Window

Meodify Shortout/Delete Macro...

Red 5ave and Run

Development quick comipile with DLL

Release compile to standalone exe

Custom compile
Red System libRedRT compale

There you will find a "Custom compile"”. You may change the parameters of this
compilation on "Plugins / NppExec / Execute...", choosing the "Custom compile" script

and editing it.
E Ci\RededitarEXEN mypragramsthallowerdd.red - Matepads + — =] x
Filz= Edit Search View Encoding Lengusge Settings Tocls Macre Run | Plugins
Windew T Customize Taolbar > |
cHEHME S| & P HppExe: ¥
| helloward red E3] MppEsport >

Bed [fesds: view]

view [buttomn "Hell

" [guit]]

15/ 349

Execute...
Dhrect Execute Previcus
Show Consale
Toggle Console
G Lo nesd error
GO to previcus e
= Corsole Commands History
Cansale Qutput... [OEMAOERM}

Mo internal m=ssages

F&
Cirl-F&

Chrle~

Helpin' Red

Execute... >

Command(s):

[save current file
MNPP_SAVE

/f compile Red script
red.exe - -t windows -0 "${CURRENT _DIRECTORY)\S(MAME_PART).exe”™ "S(FULL_CURRENT _PATH)"

/[execute the compiled file
MPP_RUN ${CURRENT DIRECTORY)\&(MAME_PART).exe

Custom compile e
s | [

There is also the Red System libRedRT compile macro. This one uses the -u option.
| created it to do some tests with Red Computer Vision library by Francois Jouen.

When you compile scripts, Rededitor shows a "console" panel. Unfortunately, that is
not Red's console. It displays Red's output, like prints and probes, but it cannot be
used for input. This console is disabled in the Save and run feature, since the GUI

console is shown.

| £h\Rededited 3B esamplesi Basics and GUNY - Welcome.red - Motepad-s + - O X

¥

File Edit Search Wiew Epcoding Language Sattings Tools Macro Run Plugins Window

= 00 - Weicome r=d [|

< ¥

Conzole

Lz

Compibng C: Pedad bor X0 = xamples 10- Dagcs and GULND - Wedoome.red ..
. Lompiaon Bme i 1858 me

Target: windoves -

£ *

I'm afraid the examples packed with Rededitor leave a lot to be desired. | can't bring
myself to create simple scripts for all topics, and many of them are text-based to be
used with console, so don't lend themselves for compilation. Hope to improve that in the
future.

Rededitor License:

Rededitor is just a pre-configured Notepad++ with 3 plugins: "Customize Toolbar",
"NppExec" and "NppExport. Please, refer to Notepad++'s "license.txt" in Rededitor's
folder.

As far as I'm concerned you can do whatever you want with Rededitor as long as you

16 /349

https://github.com/ldci/redCV

Helpin' Red

respect Notepad++ license.

The only actual change made to the program itself (Notepad++) was changing its icon.

< Previous topic Next topic >

17 /349

Easily create Qt Help files

Setup - Visual Studio

Installing Visual Studio with Red extension seem to me as being very straightforward. First
you must run the Red executable, this page says "For Windows user, need to run red. exe
--cli first"), so, open the command prompt make sure you run the Red executable with the
--cli option at least once before installing Visual S. Look here how to do that.

Then download Visual Studio from here and install it like any other software.

Then open this page (Red extension) and click on Install. You will probably be prompted to
"Open Visual Studio Code" . Click onit too:

2

rietplace vizuakhudiocomyiter

= Cipen Visual Studia Code?
cgramming Languages = Red Gk Open these Types of B ks i The assocsied app

Red

Fullstzck Technologies Limited | & 405 instals | i 4 % % % (5] 2

Syntax Coloring, Intalisenss, Snippats and man

Visual Studio will open with a button to install the Red extension. Click on this install button
and... you are done! | had to close Visual Studio and open it again for changes to take
effect. Maybe you will need to do that too.

Vew o Uebug lasks Help

TOHS 2 LIMSIVED

OUTPUT

Some basic tips on how to use Visual Studio:

https://www.helpndoc.com/feature-tour
https://github.com/red/VScode-extension
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=red-auto.red

1‘3_] = Mybirsbred - Visual Studio Code - a bt

Filp Edit Selection View Go Debug Tasks Help

4 DPEN EDNTORS 2 UNSRVED

write your
coda hera

Change All Docurnencess

Open Falder Com right click

for options

TERMINAL

Cammand Palette..

this is your
conscle

Ln5 Col1 Tab Spexd UTF-8 CRIF Red

4] « MyFirstred - Visual Studic Code - [m} X

Fil= Edit 5 m Wi Go Debug Tasks

EXFLL 1 = MyFirstred &

4 DIFEM EDITORS 3 UNSAWED

FTION:
tputs a wvalue lowed by a mewline.

15 a native! walue.

TERMIM AL

Place cursor over
command to get help

Ln5 Col1 TabSize:d UTF-E CALF Red @ M

< Previous topic Next topic >

Helpin' Red

Generate EPub eBooks with ease

"Hello world" - run and compile

Console "Hello world":

Write the code below on Rededitor, save it as "MyFirst.red" in the "myprograms" folder
and execute it.

You should have:

(& I My A & B Red Conscle — O X
e Edt Search View Encoding Language Settings Toock Macre Run fY File Options

Window 7 A Hello world! :
a = Hw a e ll.—h FE1 CIR- RN bﬂ T x| BE|= "R |

Hwnatea | - N
1 Red [] | §

I : print "Hello world!= C !

i]

Iln:3 Col:20 Sel:0]0 Windows (CRLF) UTF-8 ING

The window on the right is the console, sometimes called REPL. Click there, type print "I
can use the console too!" and press enter:

E Red Console

- File Options
Hello world!
»» print "I can use the console too!l™
I crn use the console too!
>

Now type 3 + 7 and press enter:

20/ 349

https://www.helpndoc.com/create-epub-ebooks

Helpin' Red

E Red Console

File Options

Hello world!

»» print "I can use the console too!™
I can use the console too!

»>» 3+ 7

== 18

2

Notice that you must have a space between words. Spaces are the delimiters and without
them you get errors:

Hello world!
>> print "I can use the console too!"
I can use the console too!

>> 3 + 7
== 10

>> 347 ;no spaces!!!!!

*** Syntax Error: invalid integer! at "3+7"
*** Where: do

*** Stack: load

Notice that after 3+7 Iwrote ;no spaces!!!!! . Red ignores words that come after a semi-
colon, that's one way to make comments to your code.

Back to the program (aka. script):

Interpreted programming languages execute one line of code at a time. Programs for
interpreted languages are called "scripts”. Red is not really interpreted, as it does some
compiling before running (sort of), but its programs are generally called scripts anyway.

Onthe first line we have Red []. As we mentioned before, every Red script must start
with Red, Not RED nor red, but Red. Following Red we have brackets. In Red, anything
inside brackets is called a "block”. This first block is intended to contain information about
your program. This information is mostly optional with a few exceptions, the most relevant
being the declaration of libraries (more on that in a while).

A nice first block would be:

Red [
title: "Hello World"
aut hor: "My nane"
version: 1.1

pur pose {
To print a greeting to the planet.
Notice that multi-line text goes

21 /349

Helpin' Red

inside curly brackets.

}
]

print "Hello World!"

Anything before the Red[] is ignored by the interpreter:

Lots of things may be witten here.
The interpreter only considers what is
witten after the..

Red []
print "It works anyway!"

"Hello world" with graphic user interface - GUI:

One of the most striking features of Red is it's easy-to-use graphic interface. It makes a
very clever use of the Operating System's own graphic APIs. A simple "Hello world" with
GUlwould be:

i < || B8

File Edit Search Viey cogling Language Settings Toolks Macro File Opticn

s EHE R & s D | g
5 MyFrt e £ |

Fe=d [needs: ‘wiew) -

wlew
Eext "Hello world"®

A *

Hella waorld

W

£ >

Ln:3 Col:9 5el:0)|0 Windows (CRLF) UTF-B INS

Notice I wrote needs: 'view inthe header block (apostrophe is optional). That tells Red to
load the "view" graphic library. This is not necessary if you are using the GUI console, as
the "view" library is already loaded, but I think it's a good idea to include it anyway.

Compiling your "Hello world" to an executable file:

To compile your script, you must execute Red followed by one or more options and the
name of the script. The most common options are -c and -r.

-c creates an executable, but also creates a DLL and some other support files. That
executable is not standalone, it must have the DLL in the same folder to run. The main

22 /349

Helpin' Red

advantage of using -c is that, once the DLL and support files are created (may take a
minute or two), the subsequent compilations are quite fast. That means you may change
the script and quickly recompile it.

-r , onthe other hand, creates a standalone executable, but it does the full compilation
every time, so it takes longer to recompile if you change your script.

On Rededitor, you already have macros that save, compile and run your script. You may

use the . Development quick compile with DLL (uses -c option) or the ® .
Release compile to standalone exe (uses -r option).

CLI compiling:
You can create an executable from your GUI "Hello World".

If you saved the GUI program above as "MyFirst.red"” in the "myprograms” folder of
Rededitor, you should have something like this in your computer:

« v A <« Rede.. » myprograms w | Search mypro.. 2

o

RED 2 Marme
Rededitor @ MyFirst.red
backup

examples

myprograms

plugins oo |l 3

For the sake of clarity, make a copy of your Red executable and paste it in the same folder
as your program, otherwise the results of the compilation will be in the Rededitor folder, lost
among all those files.

2 Mame

|:] My First.red
‘ red.exe

Open the Command Prompt window. If you don't know how, write "cmd" in Window's
search field and click on the Command Prompticon:

23 /349

Helpin' Red

u Cammand Prompt
Ceeklop app

Apps

cedt.omd

=
@ Hodz.js command prompt

Ot o ror Desktop (MinGy 4152 32 bit)
=

Q5.7 for Deskiop (MinGv 530 32 bitl

In the Command prompt, type the path to your Red executable (the executable you just
copied in the "myprograms” folder), followed by -r -t windows and the name of your
program:

C: \ User s\ Andr é\ Docunent s\ Rededi t or\ prograns> red. exe -r -t

Wi ndows first.red

Note: If you compile to windows, i believe you must always load the GUI library (use needs: view). If
you just want a program that runs on CLI alone, you may use MSDOS (default) as target.

Red will give you a series of messages in the Command Prompt and, after about a minute
you will have the standalone executable in your "programs” folder:

Fat

Mame
E Myfirst.exe
|| MyFirst.red
. red.exe
Double click on it and you will have your GUI "Hello World" message on your screen.

The -t windows is not really needed, as the default (MSDOS) will give you very similar
results. Try both.

You could compile the MyFirst.red program using only the -c (compile) option:

C: \ User s\ Andr é\ Docunent s\ Rededi t or\ progr ans> red. exe -c

You will then have the following files in your "myprograms” folder:

24 | 349

Helpin' Red

Mame

4] libRedRT.dll

[libRedRT-defe.r

[libRedRT-extras.r

|] libRedRT-include.red
E MyFirst.exe

|J_ MyFirst.red

. red.exe

The only two files you need to run your program are the libRedRT.dIl and your program's
executable, in this case MyFirst.exe.

However, when your run your executable, you will notice that Red keeps a very annoying
Command Prompt window open as the program runs. If you want to avoid this use the
target option -t. The option -t compiles it to a specific platform.

por ogr ans> red. exe -c -t

C: \ User s\ Andr é\ Docunent s\ Rededi t or\

This will result in those same extra files, including the DLL, but it won't open the Command
Prompt while your program runs.

Extra notes on compiling:

Red Wiki about issues

| found that the compiled version of a program may not behave as the interpreted one. |
had problems with "print" statements | left for debugging, so I guess calling console
commands in executable mode is not ok. lalso had problems with global variables (words)
inside functions, the compiler does not seem to recognize them as global variables. |
solved this last problem in two different ways:

1. I"declared" my variables, that is: | assigned values to the variables (words) in the
beginning of my program. The values are not important, as they change later.

2. lused the "-e" compiler option (see in "Compiler options" below).

You should be able to compile to the platforms listed below but, as of this writing, Red is
still evolving, and you may find some issues (e.g. compiling to android does not seem to
work yet).

From Red's github page:
Cross-compilation targets:

MSDOS : Windows, x86, console (+ GUI) applications
Windows : Windows, x86, GUI applications

25/ 349

https://github.com/red/red/wiki/[NOTES]-Compiling-with-console-functions
https://github.com/red/red

WindowsXP
Linux
Linux-ARM
RPi

Darwin
macOS
Syllable
FreeBSD
Android
Android-x86

Compiler options:

-c, --compile

Helpin' Red

: Windows, x86, GUI applications, no touch API
: GNU/Linux, x86

: GNU/Linux, ARMv5, armel (soft-float)

: GNU/Linux, ARMv5, armhf (hard-float)

: macOS Intel, console-only applications

: macOS Intel, applications bundles

: Syllable 0S, x86

: FreeBSD, x86

: Android, ARMv5

: Android, x86

: Generate an executable in the working
folder, using libRedRT. (developement

mode)
-d, --debug, --debug-stabs : Compile source file in debug mode. STABS
is supported for Linux targets.
-dlib, --dynamic-1ib : Generate a shared library from the source
file.
-e, --encap : Compile in encap mode, so code is
interpreted
at runtime. Avoids compiler issues.
Required
for some dynamic code.
-h, --help : Output this help text.
-0 <file>, --output <file> : Specify a non-default [path/][name] for

-r, --release
everything

the generated binary file.
: Compile in release mode, linking

together (default: development mode).

-s, --show-expanded : Output result of Red source code

expansion by

the preprocessor.

-t <ID>, --target <ID> : Cross-compile to a different platform

target than the current one (see targets
table below).

-u, --update-1ibRedRT : Rebuild 1ibRedRT and compile the input

script

(only for Red scripts with R/S code).

-v <level>, --verbose <level> : Set compilation verbosity level, 1-3 for

-V, --version
--config [...]

--cli

Red, 4-11 for Red/System.

: Output Red's executable version in x.y.z
format.

: Provides compilation settings as a block
of "name: value pairs.

: Run the command-line REPL instead of the
graphical console.

26 /349

Helpin' Red

--no-runtime : Do not include runtime during Red/System
source compilation.
--red-only : Stop just after Red-level compilation.

Use higher verbose level to see compiler
output. (internal debugging purpose)

There is also -e option. See"Extra notes on compiling” above.

Running Red on system's console:

To run Red on system's console, open cmd prompt, change directory to the folder where
you have your Red executable and type its name followed by B3SHl . Note it's two dashes. |
have red-063. exe, SO:

C:\Users\André\Documents\RedIDE>red-063.exe --cli
--== Red 0.6.3 ==--

Type HELP for starting information.
>>

Passing arguments to a Red script:

Everything on the command line that follows the script file name is passed to the script as
its argument. Those arguments are stored on system/options/args as a block.

This script was saved as "arguments.red™:

Red []
probe system options/args

Executed from CLI:

C:\Users\André\Documents\RedIDE\programs>red-063.exe arguments.red foo

boo loo

Output of script on Red's console is:

[ll_Fooll |lb00|l |l100|l]

>>
< Previous topic Next topic >

27 1349

Built-in help

Full-featured EPub generator

Red has an exceptional built-in help. There is a large amount of information you can get
about the language and about your own code just typing a few commands on the console.

mmmn ? (Or help)

Red-by-example

Gives information about all of Red's reserved words and also about your own code. You
may also type help, but ? is, of course, shorter. ? by itself prints information about how to

Returns date and time.

NOW is a native!

use help.
>> ? now
USAGE :

NOW
DESCRIPTION:
REFINEMENTS:

/year

/month

/day

/time

/zone

/date

/weekday
1).

/yearday

/precise

/utc
RETURNS:

value.

Returns
Returns
Returns
Returns
Returns
Returns
Returns

Returns

year only.

month only.

day of the month only.

time only.

time zone offset from UCT (GMT) only.
date only.

day of the week as integer (Monday is day

day of the year (Julian).

High precision time.
Universal time (no zone).

[date! time! integer!]

>> a: [1 2 3]

== [1 2 3]

>> help a

A is a block! value: [1 2 3]

https://www.helpndoc.com/create-epub-ebooks
http://www.red-by-example.org/#help

>> help block!
a length: 3 [1 2 3]
cancel-captions 1length: 3 "cancel” "delete" "remove"

>> a: function [a b] [a + b]
func [a b][a + b]

>> ? a
USAGE :
Aab
DESCRIPTION:
A is a function! value.
ARGUMENTS :
a
b

You can get information about complex objects:

1 Red [needs: "view]

Ta : wview/no-wait

button
? a

ﬂ Red Conscle

1 File Options
11 type word! window
12 offset pair! 637x387
13 size pair! 136x45
14 text string! "Red: untitled"
15 image none! none
color none! none

If you don't know exactly what you are looking for, "?" will perform a search for you:

>> ? -to

hex-to-rgb function! Converts a color in hex format to a
tuple value; returns NONE if it f...

link-sub-to-parent function! [face [object!] type [word!] old
new /local parent]

link-tabs-to-parent function! [face [object!] /init /local

faces visible?]

You can find all defined words of a given datatype!

>> ? tuple!
Red 255.0.0
white 255.255.255

transparent 0.0.0.255

Helpin' Red

black 0.0.0
gray 128.128.128
; ... the list is too long!

- W h at Red-by-example

Prints a list of globally-defined functions. Try it!

- SO u rce Red-by-example

Shows the source code for a mezzanine function or a user created function.

Try source replace.

mezzanine functions

Red interpreter has:

¢ the native functions which are "embedded" in the interpreter and are executed at a
very low level;
e and mezzanine functions which, even though they are part of Red interpreter (come in

the Red executable) are created using Red, that is, they have a source code you can
read using source.

- ab O U t Red-by-example

Display version number and build date.

< Previous topic Next topic >

30 /349

http://www.red-by-example.org/#what
http://www.red-by-example.org/#source
http://www.red-by-example.org/#about

Helpin' Red

Easy to use tool to create HTML Help files and Help web sites

Notes on syntax

Red is case insensitive, but there are few exceptions, the most relevant is that a
program must begin with Red (not REd or red).

new-1line characters are mostly ignored by Red interpreter. A relevant exception is
a new-line inside a string.

Red is a functional language, meaning that it evaluates results. The evaluation order is
not usual and you may be interested in looking at the Evaluation chapter.

(the following topics may prove to be inacurate, but so far they have explained Red
behavior pretty well)

A Red program is a long chain of "words". Basically, these words may be either "data"
or "actions".

"words" are separated by one or more whitespaces .

Red keeps a dictionary with predefined words (built-in functions) and user-created
words.

"words" may be grouped into "blocks" by enclosing them with brackets. "Blocks" are
not necessarily routines, they are just a group of words that may, or may not, be
evaluated by an "action".

all the program data is inside the program itself. If external data is required, it is added
to the program's chain of "words".

every word must have a value while evaluated. This value may come from:

o the word itself, if it is data;

o evaluation, if the word is an action;

o another word or block. This is achieved by adding a colon after the word, with no
spaces, followed by the data or block we want to associate it with (e.g. myRoom:
33).

[find that in Red, you may say that the variable is assigned to the data, and not
the other way around. Infact, there are no "variables” in Red, just words that
get assigned to data.

Copying words (variables) in Red may be tricky. When you want truly independent
copies , you should use the word copy to . See Copying chapter.

31/349

https://www.helpndoc.com/help-authoring-tool

Helpin' Red

e Aswith copying, clearing a series (notice that all strings are series) is also tricky.
Simply assigning " (empty string) or zero to it may not produce the expected results.
Red's logic makes it seem to "remember" things in unexpected ways. So to clear a
series you should use the built-in function clear.

e everyword has a datatype. Red has a remarkably large number of datatypes. They
are listed in the Datatypes chapter.

Somewhat simplified view of Red's flow:

- o € ¢ » eeics b &b &)
r\\‘ﬂ System words

Program words

Ewaluation

Result

Note: The function that picks data from before it (the third from right to left) refers to infix
operators like "+","-" ,"*" "[" etc.

Refinements

Many actions in Red allow "refinements”. A refinement is declared adding "/<refinement>"
to the command (built-in function) and it modifies its behavior.

Commenting your code:

All text after a semi-colon (;) ina line is ignored by the interpreter. There is also the built-in
function comment . A group of words after comment will also be ignored by the interpreter.
This group of words must be enclosed by " ", { }orby[].

| also note that any text written in the source code before the Red "prologue” (Red [...]) at
the beginning is also ignored by the interpreter, but 'm not sure this is a safe way to add
information to your code.

Examples of comments:

It seenms to me that text witten here(before the prol ogue)
is ignored by the interpreter. It may (or nmay not) be a good
way to add information about your script.

Red [; Here the prol ogue begins.
Aut hor: "Ungaretti"” ; You may add coments after a ";"
Date: "septenber 2018" ; but one-line only.

Pur pose: "to show how to comment the code”

]

A good prol ogue should be informative

comment [This is a nmultiline coment
within brackets. Not only it doesn't | ook good

32 /349

Helpin' Red

but it may cause errors - if you add a conmma here for exanpl e]

print "End of first coment."”

coment This is a coment." ; if you use quotes, conments are

; limted to one line
print "End of second coment."

comrent { This is the best way to wite
a multi-line comment using "conment" word}

print "End of third coment."

{bizarrely, the interpreter seens to ignore text
witten within curly braces even w thout the use of
the "comment” keyword". This | ooks el egant to ne,
but be careful!}

print "End of the fourth, strange, coment."

End of first comment.
End of second comment.
End of third comment.
End of the fourth, strange, comment.

< Previous topic Next topic >

331/349

Helpin' Red

Create cross-platform Qt Help files

Using words

Since a Red program is a series of words, its a good idea to take a closer look at them.

word

A word by itself (not data) does not mean much to Red. Every word must have a value
associated to it while evaluated. This value may come from the evaluation of an expression
or from the "dictionary”. In this later case, it may be data or an action.

>> myBirthday
*** Script Error: myBirthday has no value

word:

The colon after a word associates it with something in the dictionary. Itis the classic
"assignment” of other programming languages. By the way, this word-colon group (e.g.
"myword:") is a set-word! datatype.

Dictionary
This
30/07/1967
That
Something else

myBirthday:

>> myBirthday: 30/07/1963
== 30-Jul-1963

>> print myBirthday
30-Jul-1963

Words may be associated with code (action) too:

>> a: [print "hello"]
== [print "hello"]

>> do a

hello

‘word

The colon before a word makes it return whatever is associated with it in the dictionary

34 /349

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

Helpin' Red

without any evaluation. Values and actions are returned "as is". By the way, this is a get-
word! datatype.

Dictionary

This

— | 30/07/1967
That

Something else

4 :myBirthday ¢ —— —

>> myBirthday: 30/07/1963
== 30-Jul-1963

>> partyDay: :myBirthday
== 30-Jul-1963

>> print partyDay
30-Jul-1963

If a word is associated with an action, a colon before it makes it return the whole code of
this action. This creates an interesting situation if you use it with Red's built-in functions:

>> imprimire: :print
== make native! [[
"Outputs a value followed by a newline"

>> imprimire "hello"
hello
What happened above is that "imprimire” now has the same functionality as print .

Something like this:

Dictionary

This

imprimire: 4— ;print {7-""*---
L |

do [toss argument into console]
That
. Something else

One more thing

T ——@ | do [toss argument into console]

Important notes:

e the :word syntaxis also used a way to access data in a series, as described in the
Blocks & Series chapter;

e if youredefine built-in functions in Red, you may cause a crash, not because of the
change itself, but because all the internal functions that rely on the original meaning of
that word may not work properly.

35/349

‘word
Returns the word itself, that is: just a group of letters (but not a string! Just a symbol). This is
a lit-word! datatype.

>> print something

*** Script Error: something has no value
*** Where: print

*** Stack:

>> print 'something
something

>> type? :print
== native!

>> type? 'print
== word!

/word

The slash before a word turns it into a refinement. Obviously, this is a refinement!
datatype.

native! S et

Assigns a value to a word. It seems to me as being the same as the colon after the word...
>> set 'test 33
== 33
...except that you may set many words at once:
>> set [a b c] 10
== 10

>> b
== 10

native! u n Set

A previously defined word can be unset at any time using unset:

>> set 'test "hello"

== "hello"

>> print test

hello

>> unset 'test

>> print test

*** Script Error: test has no value

< Previous topic Next topic >

Helpin' Red

Easily create Web Help sites

Evaluation

There is a good description of Rebol's evaluation here. It's pretty much the same for Red. [l
not repeat that explanation, instead, I'll describe how | see Red's evaluation from my
personal point of view. Again, this may prove inaccurate, but so far it explains Red's
behavior pretty well.

Red, the furious evaluator

Once triggered, Red will start reading a text from left to right (—) executing all operations it
can find. If it recognizes an operation that requires arguments, it picks the arguments from
this main text as needed to come to a final value. Take a look at the concept of evaluable
groups and argument picking. Red considers text (strings) as a block of characters, so this
main text of Red code is just a big block for Red, even without brackets or quotes.

What triggers Red's fury?

Red is triggered by the "command" do. You don't always have to actually type do, when you
run a script or press ent er atthe console, what is happening is that you are applying an
implicit do to the text ahead. In the case of a script, the evaluation only begins after the
interpreter finds the characters "Red ["

An interesting consequence of all this is that, although it's not generally considered good
practice, you can actually execute text:

>> do "3 + 5"
==8

>> 3 + 5 ;same thing. The "do" is implicit and input is text (but not a
string! datatype).
==8

If it's an evaluation, what is the result?

The result of a Red interpretation is the resulting value of the last evaluable group. Of
course you can do all sorts of interesting things along the way, as writing files, reading web
pages and creating beautiful drawings on your screen, but the value returned by Red (if
there is one) is this last result.

>>do "3 +5 7 * 8 print 69"
69

What halts Red's fury?
The end of the text (code) and comments, of course.

But also, Red's evaluation skips blocks inside the main text (blocks within the main block),

38 /349

https://www.helpndoc.com/feature-tour
http://www.rebol.com/r3/docs/concepts/expr-evaluation.html

Helpin' Red

just leaves them as they are. It only evaluates them if they are an argument of an operation,
noting that this operation may be another do:

>> do {print "hello" 7 + 9 [8 + 2]} ; the last result is the
unevaluated block

hello

== [8 + 2]

>> do {print "hello" 7 + 9 print [8 + 2]}
hello
10

>> do {print "hello" 7 + 9 do[8 + 2]}
hello

You will find out that, to develop Red scripts, sometimes you need the resulting values of all
evaluable groups in a block, not just the last one. You can achieve that with reduce. It
returns a block with all the results. However, It' not as if you applied a do to each evaluable
group inside the block, as you can see here:

>> reduce [3 + 5 7 * 8 print 69]
69
== [8 56 unset]

>> reduce [3 + 5 7 * 8 "print 69"] ; do "print 69" should print 69!
== [8 56 "print 69"]

Math evaluation order

I'm still looking for a simple rule to explain Red's math evaluation sequence. For the
moment, | have two favorite candidates. The first is very straightforward and easy to use.
The second is not very practical, but gives a view of how (I think) the Red interpreter
"thinks", and so | believe itis a good idea to take a look at it to grasp some concepts that
may be useful.

1) My favorite rule for the moment:

1- All operations with infix operators that have only values (not functions) as operands are
evaluated first. If these infix expressions have more than two operands they are evaluated
from left to right (—) with no precedence (i.e., multiplication doesn't automatically get
computed before addition) .

2- Then the whole expressionis evaluated from right to left (<).

>> square-root 2 + 2 + square-root 3 * 3 * square-root 1 + 4 * 5
== 3,272339214155429

39 /349

https://en.wikipedia.org/wiki/Infix_notation

Helpin' Red

———
>> sgquare-root + sguare—root * sgquare—-root * 5

»>>» sguare—-root 4 + sguare-root 9 *|5ql_:|.are—rcu:|t 25|

>» sguare-root 4 + sgquare-root 9 * sgquare-root

>>» square—-root 4 + square—root

>> sguare-root 4 + |5quare—rcu:ut 4."5-| <:|
P

= 5quare—rcu:vt|4 + G,L.I‘l...|

/

>> |[square—root l'D;".I‘l. . .|

— 3.27...

2) My second favorite, the 3 concepts explanation:

This seems to work and I think that's somehow what the interpreter does.

It's not a simple rule and I think it may not be formally accurate, as I'm not sure that every
infix operator has an exact correspondent function operation.

Concept 1: Left to right always —

In Red, things are evaluated from left to right. There is no "order of precedence" as in other
languages (i.e., multiplication doesn't automatically get computed before addition).
However, you may enclose the functions in parentheses to force precedence.

> 2 + 3 *¥5
== 25 ; not 17!

Not only expressions, but the whole code of a program is evaluated from left to right.

Infix operators

" are called infix operators. They correspond to the
functions add , multiply, divide and subtract, which need two
arguments. So:

3 +2 isthesameasadd 3 2
5 * 8 |sthe same as multiply 5 8 ...

...and so on.

40 / 349

Helpin' Red

2 + 3 * 5isjusta more readable form of multiply add 2 3 5.Red's
interpreter does the conversion for you.

Concept 2: Evaluable groups.

When you have a chunk of code, there are groups of words that are evaluable, that is, can
be reduced to basic datatypes. For example [square-root 16 8 + 2 8 / 2 77]is
actually made of 4 evaluable groups: square-root 16 ;8 + 2;8 / 2 and 77. Youcan
use reduce to "see" the values of evaluable groups:

a: [square-root 16 8 + 2 8 / 2 77]

a: [[square-root 16|[8 + 2|8 J 2]/77]

>> reduce a
= [4.0 10 4 77]

Concept 3: Functions pick their arguments from the evaluable groups

A function takes its arguments from the evaluable groups ahead of it, from left to right (think
of infix operators as syntax sugar for their function counterparts). A function that needs 1
argument, take the next evaluable group; a function that needs 2 arguments, take the next 2
evaluable groups, and so on. Notice that a function may use an evaluable group that has
another function in it. In this case, it holds its evaluation until the argument function is
evaluated, and then use the resullt.

Again, no precedence rules, just left to right.

| et e s m—

A consequence of that is that an expression like this...

square-root 16 + square-root 16

..Is not 8, as many would expect, but 4.47213595499958, because what Red sees is:

= =

square-root| (16 + |square-root||lé

(oreven: square-root add 16 square-root 16)

41 /349

That is: One function that has one argument and one evaluable group (which happens to
have a function in it).

To obtain that intuitive 8, one must use parentheses:

>> (square-root 16) + square-root 16
== 8.0

Another example, mixing an infix operator and its corresponding function:

>> reduce [add 8 + 2 * 3 8 / 2 divide 16 / 2 2 * 2]
== [34 2]

>» reduce [pdd][& + 2 * 3|8 / 2|[dividel(1s / 2|j2 * 2]
== [34 2]

Other explanations:

These are some other "rules" | have seen discussed:
#1

"Left-to-right and operators take precedence over functions and if an infix operator sees a
function as its second operand, evaluates it"

#2

"In general, expressions are evaluated from left to right; however, within each expression
evaluation occurs from right to left".

#3

"Each expression takes as many arguments as it should, each argument in turn may be
another expression and Red will parse the expressions until they all have a full set of
arguments".

< Previous topic Next topic >

Easily create Web Help sites

Some pitfalls of Red learning:

Red is very productive. It's the most productive programming language | know. You can get
so much done using so little code! It's also very easy to use after you learn it, but 1 would
like to comment here some of the issues | found in the process. You can't really avoid these
pitfalls, but your journey may be easier if you are aware of them.

#1 - New way of thinking. It takes longer to learn than expected:

Red's productivity comes with a price. Although the basic examples are easy, it seems to
me that it's very hard do real programming in Red without grasping its major concepts. Red
is not made of some basic building blocks that you put together as you please, in Red
everything is interconnected. Evaluations, datatypes and dialects permeate all coding.
Working with the concept of "code is data and data is code" takes practice to get used to.
It's like learning a foreign language, you kind of absorb it by repetition.

2 - Wrong datatypes in arguments:

A word in Red may have one of the many, many datatypes available, but functions expect a
very definite set of datatypes in its arguments. You will soon find that bug where a
seemingly innocent "variable" is crashing your script or giving unexpected results for no
apparent reason. A very good idea is to start your debugging by checking the datatype of
your arguments. One basic approach would be inserting some "print type? <variable>"
in your code when things go wrong. You can find out what datatypes your function expects
typing "? <function>" inthe console.

3 - Dialects use only dialect commands:

You will soon use the built-in dialects of Red, as VID (for GUI), parse or draw, and you will
try to insert common Red structures inside the dialect block. Bad idea. Dialects may (or
may not) have their own commands to let you use regular Red inside their block, but you
can'tjust insert a loop or a branch without proper coding. For example, in VID, you may use
do [<Red code>] but other dialects require that you use external functions and then
evaluate results using compose. More on that later, for now, just beware.

So:

Red [needs: vVview]
parse [xxx] [only parse commnds here]
view |

only view commands here

draw only draw conmands here]

< Previous topic Next topic >

https://www.helpndoc.com/feature-tour

Helpin' Red

Free Web Help generator

Console input and output

Note: console input and output may cause problems if you compile your programs. This
makes sense: if you compile it, the console is simply not there! Red Wiki about issues

native! pr'nt Red-by-example MyCode4fun

print sends data to the console. After the data, it sends a newline character to the
console. It evaluates its argument before printing it, that is , it applies a reduce to the
argument before printing.

Red []

print "hello"
print 33
print 3 +5

hello
33
8

native! p“n Red-by-example MyCode4fun

prin also sends data to the console, but it does NOT send the newline character . It
evaluates its argument before printing it.

Red []

prin "Hello"
prin "World"
prin 42

HelloWorld42

- p rO be Red-by-example MyCode4fun

probe prints its argument without evaluation and also returns it. Remember that print
evaluates its argument. probe prints and returns the argument "as itis", so to speak. It's
able to show expressions that would cause print to give an error.

It may be used for debugging as a way of showing code (by printing) without changing it.

>> print [3 + 2]
5

>> probe [3 + 2]
[3 + 2]

44 | 349

https://www.helpndoc.com
https://github.com/red/red/wiki/[NOTES]-Compiling-with-console-functions
http://www.red-by-example.org/#print
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-forever-unview-quit-if-and-print-
http://www.red-by-example.org/#prin
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-print-prin-probe-space-
http://www.red-by-example.org/#probe
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-print-prin-probe-space-

[3 + 2]

>> print probe [3 + 2]
[3 + 2]

>> a: [circle 5x4 10]
== [circle 5x4 10]

>> print a

*** Script Error: circle has no value
*** Where: print

*** Stack:

>> probe a
[circle 5x4 10]
== [circle 5x4 10]

Described also here, following mold.

- | n p ut Red-by-example MyCode4fun

Inputs a string from the console. Notice that any number typed on console are converted to
a string.newline character is removed.

Red []
prin "Enter a nane:

nane: input
print [name "is" length? nane "characters |ong"]

John
John is 4 characters long

routine! a_Sk Red-by-example MyCode4fun

Same as input, but displays a string.

Red []
name: ask "VWat is your nane:
prin "Your nanme is "

print name

What is your name: John
Your name is John

< Previous topic Next topic >

http://www.red-by-example.org/index.html#input
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-print-prin-probe-space-
http://www.red-by-example.org/index.html#ask
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-ask-

Free PDF documentation generator

Running code

Of course you may save your script as a file and run it from command prompt, as an
argument of the Red executable, like this:

C:\Users\you\whatever> red-063.exe myprogram.red
This will launch the Red interpreter, open the console (REPL) and run your script.

But once the Red environment is running, you can execute code using the built-in function
do .

native! do Red-by-example MyCode4fun

Evaluates the code in its arguments. In other words: executes the code. This argument can
be a block, a file, a function or any other value.

>> do [loop 3 [print "hello"]]
hello
hello
hello

Check the Eiles chapter before you proceed here.

For example, if you saved a Red script as myprogram.txt you may execute it from the
console by typing this:

>> do %myprogram.txt

Note that in this example the Red interpreter and the text file must be in the same folder,
otherwise you must set your paths right.

Also, if you type:

>> a: load %myprogram.txt

And then:

https://www.helpndoc.com
http://www.red-by-example.org/#do
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-do-uppercase-and-lowercase-
https://ungaretti.gitbooks.io/red-language-notebook/content/files-and-i-o.html

Helpin' Red
>> do a
...your program will run normally.
do, load and save are better understood if you think of Red's console as the screen of

some old computer from the 80's running some variation of basic language. You
can load your program, save it, or do (execute) it.

You can also load and execute functions saved as text :

>> do load %myfunction.txt

Notice that you can do all this from inside a Red program! So it's a powerful command.

< Previous topic Next topic >

47 / 349

https://ungaretti.gitbooks.io/red-language-notebook/content/files-and-i-o.html
https://ungaretti.gitbooks.io/red-language-notebook/content/files-and-i-o.html

Single source CHM, PDF, DOC and HTML Help creation

Stopping code

- qU|t Red-by-example MyCode4fun

Stops evaluation and exits the program.

If you type this on the GUI console (REPL), it closes. If you type this onthe Command Line
Interface, you just exit the Red interpreter.

Ireturn => Stops evaluation and exits the program with a given status. .

quit/return 3 s;hands the value 3 to the Operating System

On windows if you compile a red app that uses e.g., quit/return 55 and after running the
.exe enterincmd echo gl SR, it will print 55 (or whatever you set).

- halt Red-by-example MyCode4fun

I think this one just stops (halts) the execution of the script. The documentation says it
returns the value 1.

routine! q u |t-ret u rn Red-by-example

Stops evaluation and exits the program with a given status. Seems to me as exactly the
same as quit/return, butit's a routine! datatype, not a function! Go figure.

- 0 n 'CI 0 Se Red-by-example MyCode4fun

VID event. Runs a piece of code when you close a GUI window. Mentioned also in GUI
Advanced topics.

Run the following program and when you close the window (close the program), it will print
"bye!" at the console:

Red [needs: view|
view [

on-close [print "bye!"]
button [print "click"]

https://www.helpndoc.com/help-authoring-tool
http://www.red-by-example.org/#quit
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-forever-unview-quit-if-and-print-
http://www.red-by-example.org/#halt
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-read-foreach-find-rejoin-halt-
http://www.red-by-example.org/#quit-return
http://www.red-by-example.org/#on-close
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-on-close-unview-quit-

Control-C

Pressing control-C stops the execution and exits the interpreter in the Command Line
Interface, but not on the GUI console.

< Previous topic Next topic >

Full-featured multi-format Help generator

Datatypes

It may be a good idea to take a look first at the chapters about series, as some examples
use built-in functions listed there.

native! type’? Red-by-example

Returns the datatype of a value or the datatype of what is assigned to a word in the
dictionary:

>> type? 33
== integer!

>> type? "house"
== string!

>> birthday: 30/07/1963

== 30-Jul-1963
>> type? birthday
== date!

Basic Datatypes:

¢ non e! Red documentation Red-by-example

The equivalent of "null" in other programming languages. A non-existing data.

>> a: [1 2 3 4 5]
== [12 3 4 5]
>> pick a 7

== none

¢ IOgIC| Red documentation Red-by-example

Aside from the classic true and false, Red recognizes on , off, yes and no as logic!
datatype.

https://www.helpndoc.com/help-authoring-tool
http://www.red-by-example.org/#typexqm
https://doc.red-lang.org/en/datatypes/none.html
http://www.red-by-example.org/#nonexex
https://doc.red-lang.org/en/datatypes/logic.html
http://www.red-by-example.org/#logicxex

>> a: 2 b: 3

>» a>b
== false

>> a: on
== true

== true

>> a: off
== false

== false

>> a: yes
== true

== true

> a: no
== false
>> a
== false

Notice that, as far as | know, everything that is not false , off or no is considered true:

>> if "house" [print "It's true!"]
It's true!

>> if @ [print "It's true!"]
It's true!

>> if [] [print "It's true!"]
It's true!

>> if [false] [print "It's true!"] ;bizarre!
It's true!

‘ St r | n g I Red documentation Red-by-example

https://doc.red-lang.org/en/datatypes/string.html
http://www.red-by-example.org/#stringxex

Helpin' Red

A series of chars within quotes " " or curly brackets {}. If your string spans over more than
one line, curly brackets are mandatory.

Strings are series, and can be manipulated using the the commands described in the
chapters about them.

>> a: "my string"
== "my string"

>> a: {my string}
== "my string"

>> a: {my

{ string} ;the first "{" is not a typo, is how the console
shows it. Try!

== "my”/string"

>> print a

my

string

>> a: "my new ;trying to span over more
than one line
*** Syntax Error: invalid value at {"my new}

¢ char! Reddocumentation Red-by-example

Preceded by # and within quotes, char! values represent a Unicode code point. They are
integer numbers in the range hexadecimal 00 to hexadecimal 10FFFF. (0 to 1,114,111 in
decimal.)

#'A" is a char!
"A"is a string!

It may undergo math operations.

>> a: "my string"
== "my string"

>> pick a 2

== #"y"

>> poke a 3 #"X"
== #"X"

>> a

52 /349

https://doc.red-lang.org/en/datatypes/char.html
http://www.red-by-example.org/#charxex

Helpin' Red

"myXstring"

: #Ilbll
Ilbll
ca+1

C

|
|
H o H o

¢ integer! Red documentation Red-by-example

32 bit whole signed numbers. From —-2,147,483,648 to 2,147,483,647. If a number is
outside this range, Red assigns it a float! datatype.

Note: Dividing 2 integers gives a truncated resullt;

¢ float! Red documentation Red-by-example

64 bit floating point numbers. Represented by numbers with a period or using the e-
notation.

1}
1}
w

>> 3e2
== 300.0

6.0 / 7
== 0.8571428571428571

‘ f||e| Red documentation Red-by-example
Preceded by %. If you are not using the current path, you should add the path within quotes.

The path uses forward slashes (/), and back slashes (Windows format) are converted
automatically.

53 /349

https://doc.red-lang.org/en/datatypes/integer.html
http://www.red-by-example.org/#integerxex
https://doc.red-lang.org/en/datatypes/float.html
http://www.red-by-example.org/#floatxex
https://doc.red-lang.org/en/datatypes/file.html
http://www.red-by-example.org/#filexex

>> write %myfirstfile.txt "This is my first file"

>> write %"C:\Users\André\Documents\RED\mysecondfile.txt" "This is
my second file"

¢ pat h! Red documentation Red-by-example

Used to access items inside larger structures using "/". Can be used in many different
situations, for example:

>> a: [23 45 89]
[23 45 89]

>> print a/2

45

Slashes "/" are also used to access objects and refinements. | don't know the inner
workings of the Red interpreter, but it seems to me that those are cases of the path! type.

¢ time! Red documentation Red-by-example

Time is expressed as hours:minutes:seconds.subseconds. Notice that seconds and
subseconds are separated by a period, not a colon. You can access each one with a
refinement. Check the chapter about Time and timing.

>> mymoment: 8:59:33.4

== 8:59:33.4

>> mymoment/minute: mymoment/minute + 1
== 60

>> mymoment == 9:00:33.4

>> a: now/time/precise ; a datatype is time!
== 22:05:46.805

>> type? a

== time!

>> a/hour

== 22

>> a/minute

== 5

>> a/second

https://doc.red-lang.org/en/datatypes/path.html
http://www.red-by-example.org/#pathxex
https://doc.red-lang.org/en/datatypes/time.html
http://www.red-by-example.org/#timexex

== 46.805 ;second is a float!

¢ date! Reddocumentation Red-by-example

Red accepts dates in a variety of formats:

>> print 31-10-2017

31-0ct-2017

>> print 31/10/2017

31-0ct-2017

>> print 2017-10-31

31-0ct-2017

>> print 31/0ct/2017

31-0ct-2017

>> print 31-october-2017

31-0ct-2017

>> print 31/oct/2017

31-0ct-2017

>> print 31/oct/17 sonly works if the year is the last
field, but be careful: 1917 or 2017°.
31-0Oct-2017

Red also checks if dates are valid, even considering leap years.
You can refer to day, month or year using refinements:

>> a: 31-oct-2017
== 31-0ct-2017

>> print a/day

31

>> print a/month
10

>> print a/year
2017

¢ pair! Red documentation Red-by-example

Represents points in a cartesian coordinate system (x y axys). Represented by integers
separated by "x" e.g. 23x45.

>> a: 12x23
== 12x23
>> a: 2 * a
== 24x46

https://doc.red-lang.org/en/datatypes/date.html
http://www.red-by-example.org/#datexex
https://doc.red-lang.org/en/datatypes/pair.html
http://www.red-by-example.org/#pairxex

>> print a/x
24
>> print a/y
46

¢ percent! Red documentation Red-by-example

Represented by adding the "%" symbol after the number.

>> a: 100 * 11.2%
== 11.2
>> a: 1000 * 11.3%
== 113.0

¢ tu P |e! Red documentation Red-by-example

Atuple! is a list of 3 up to 12 bytes (bytes range from 0 to 255) separated by periods.
Notice that 2 numbers separated by a period is a float! not a tuple!

Tuples are useful to represent things like version numbers, IP addresses , and colours
(example: 0.255.0).

Atuple! is not a series, SO most series operations give an error when applied. Some
operations that can be performed on a tuple! are: random, add, divide, multiply, remainder,
subtract, and, or, xor, length?, pick (not poke), reverse.

>> a: 1.2.3.4

== 1.2.3.4

>> a: 2 * a

== 2.4.6.8

>> print pick a 3

>> a/3: random 255
== 41

>> a

== 2.4.41.8

Words datatypes:

When you use type? to determine the datatype of a word, you usually get the datatype of
the value assigned to that word, as in:

https://doc.red-lang.org/en/datatypes/percent.html
http://www.red-by-example.org/#percentxex
https://doc.red-lang.org/en/datatypes/tuple.html
http://www.red-by-example.org/#tuplexex

>> test: 33.8
== 33.8

>> type? test
= float!

However, the word itself (in this case "test") may assume different datatypes, depending on
context:

datatype
word word!
word: set-word!
:word || get-word! |
‘word lit-word!
/word refinement!

>> to-word "test"
== test

>> make set-word! "test"
== test:

>> make get-word! "test"
== :test

>> make lit-word! "test"
== 'test

Datatype classes - ¢ number! and ¢ scalar!
Some datatypes are classes of datatypes:
Any of the following datatypes is also a number! datatype: integer!, float!, percent!

And any any of the following datatypes is also
a scalar! datatype: char!, integer!, float!, pair!, percent!, tuple!, time!, date!

< Previous topic Next topic >

Helpin' Red

Create HTML Help, DOC, PDF and print manuals from 1
single source

Hash! vector! and map!

I think these are special datatypes that deserve a special chapter for them. They may
improve the quality and speed of your work considerably.

Hash! and vector! are high performance series, i.e., they are faster when dealing with large
sets.

I suggest you take a look at the Blocks & Series chapters before studying this.

‘ haSh! Red-by-example

hash! is a series that is "hashed" to make searches faster. Since "hashing" consumes
resources, it is not worth creating a hash! for a series that will be searched just a few
times. However, if your series will be constantly searched, consider making it a hash! .
Rebol website claims searches may be 650 times faster than on a regular series.

>> a: make hash! [a 33 b 44 c 52]
== make hash! [a 33 b 44 c 52]

>> select a [c]
== 52

>> select a '
== 52

C

>> a/b
== 44

Nothing new really, it's just a series.

4 vector! Red-by-example
Vectors are high performance series of integer! ,float!, char! or percent!
To create a vector you must use make vector!

While hash! allow you to perform searches faster, vector! allows faster math operations
as they can be performed on the entire series at once.

58 /349

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
http://www.red-by-example.org/#hashxex
http://www.red-by-example.org/#vectorxex

>> a: make vector! [33 44 52]
== make vector! [33 44 52]

>> print a
33 44 52

>> print a * 8
264 352 416

Notice that you could not do that on a regular series:

>> a: [2 3 4 5]
== [2 3 4 5]

>> print a * 2

*** Script Error: * does not allow block! for its valuel argument
*** Where: *

*** Stack:

¢ mapl & @ction! pUt Red documentation Red-by-example

Maps are high performance dictionaries that associate keys with values (keyl: vall key2:
val2 ... key3: val3).

Maps are not series. You can't use most of series' built-in functions (commands) on them.

To set and retrieve values from the dictionary we use select (from series) and a a special
action: put.

>> a: make map! ["mini" 33 "winny" 44 "mo" 55]
== #(

"mini" 33

"winny" 44

"mo" 55

>> print a

"mini" 33

"winny" 44

"mo" 55

>> print select a "winny"
44

>> put a "winny" 99
== 99

https://doc.red-lang.org/en/datatypes/map.html
http://www.red-by-example.org/#mapxex

>> print a

"mini" 33
"winny" 99
Ilmoll 55

How to rawe extend a map!

Since map! is not a series and so you can't use things like append, poke or insert, how do
you add new items to it? The answer is the built-in function extend.

>> a: make map! ["mini" 33 "winny" 44 "mo" 55]
== #(

"mini" 33

"winny" 44

"mo" 55
)

>> extend a ["more" 23 "even more" 77]

>> probe a

#(
"mini" 33
"winny" 44
"mo" 55
"more" 23

"even more" 77

< Previous topic Next topic >

Easily create Help documents

Other datatypes.

More information on these datatypes can be found at Red documentation and Red-by-
example.

¢ issue!
Series of characters used to sequence symbols or identifiers for things like telephone

numbers, model numbers, serial numbers, and credit card numbers. Anissue! has to start
with the character "#". Most characters can be used inside an issue!, a notable exception

being the slash "/".

>> a: #333-444-555-999
== #333-444-555-999

>> a: #34-Ab.77-14
== #34-Ab.77-14

¢ url!

Represented by <protocol>://<path>

>> a: read http://www.red-lang.org/p/about.html
== {<IDOCTYPE html>"/<html class='v2' dir="ltr' x

¢ email!

Used to identify email addresses. No detailed syntax-checking is performed, it must only
contain an @ character.

>> a: myname@mysite.org
== myname@mysite.org

>> type? a
== email!

https://www.helpndoc.com/feature-tour
https://doc.red-lang.org/en/datatypes.html
http://www.red-by-example.org/#cat-d03
http://www.red-by-example.org/#cat-d03

Helpin' Red

4 image!
To create a image! you must use make image!
The external image formats supported are GIF, JPEG, PNG and BMP.

When you load an image file, the data is typed as image! It is unlikely that you will create
image with text, but the format would be:

>> a: make image! [30x40 #{ ; here goes the data...
;You can change or get information from your image using the actions
that apply to series:
>> a: load %heart.bmp
== make image! [30x20 #{
OOA2EB0OA2E800A2E800A

>> print a/size
30x20

>> print pick a 1 ; getting the RGBA data of pixel 1
0.162.232.0

>> poke a 1 255.255.255.0 ; changing the RGBA data of pixel 1
== 255.255.255.0

¢ block!

Any series within brackets.

4 paren!

Any series within parentheses.

¢ refinement!

Preceded by "/" - indicate a variation in the use or an extension of the meaning of
a function!, object!, file! or path!.

¢ action!

Is the datatype of all "actions" inred, e.g. add , take , append, negate etc.

62 /349

Helpin' Red

>> action? :take ; Colon is mandatory.
== true

To geta list of all action! words type:

>> ? action!

4 op!

Is the datatype of infix operators , like + or **,

¢ routine!

Used to link to external code

4 binary!
Is a series of bytes. It's the raw storage format and it can encode data such as images,

sounds, strings (in formats like UTF and others), movies, compressed data, encrypted data
and others.

The source format may be on base 2, 16 or 64. 'm not sure which is the default in Red,
The source formatis: #{...}

#{3A1F5A} ; base 16

2#{01000101101010} ; base 2

64#{0aGvXmgUkVCu} ; base 64

¢ word!

The mother of all datatypes. When a word is created it has this datatype.

¢ datatype!

Is the datatype of all the datatype! words listed in this chapter.

63 /349

Helpin' Red

4 event!
This datatype is explained in the Event! mouse position and key pressed.
¢ function!
4 object!

4 handle!
4 unset!

¢ tag!

¢ lit-path!
4 set-path!
4 get-path!
4 bitset!

¢ typeset!
¢ error!

4 native!
< Previous topic Next topic >

64 / 349

Helpin' Red

News and information about help authoring tools and
software

Datatypes conversion:

Red documentation

aeten (O

Converts one datatype! to another, e.g. an integer! to a string! , a float! to
an integer! and even a string! to a number!.

>> to integer! 3.4
==3

>> to float! 23
== 23.0

>> to string! 23.2
== II23.2II

>> to integer! "34"
== 34

mmemen tO-time
Converts values to time! datatype.

>> to-time [22 55 48]
== 22:55:48

>> to-time [22 65 70]
== 23:06:10

>> to-time "11:15"

65 / 349

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com
https://github.com/meijeru/red.specs-public/blob/master/specs.adoc#conversion-of-values-code-to-code

Helpin' Red

== 11:15:00

raive as-pair

Converts two integer! or float! into pair!. Note that this is not exactly a "conversion" as
we are creating a new value from two values that may even be of different datatypes, as is
the case when we "join" a float! and an integer! into a pair!.

>> as-pair 11 53
== 11x53

>> as-pair 3.2 5.67
== 3x5

>> as-pair 88 12.7
== 88x12

mmemen tO-binary

Convert to binary! value. It seems that it's not a base converter, but a datatype converter.

>> to-binary 8
#{00000008}

>> to-binary 33

== #{00000021}
< Previous topic Next topic >

66 / 349

Easy to use tool to create HTML Help files and Help web sites

Accessing and formatting data

native! get Red-by-example

Every word in Red, the native ones and the ones you create, go into a dictionary. If the word
is associated with an expression, the dictionary keeps the whole expression that may or
may not be evaluated depending on the type of call that fetch the word

If you want to know what is the dictionary description of a word, you use get . Notice that
when you refer to a word in Red (the word itself, not the value) you precede it with a quote
("). get gives you the "meaning” even of Red's native words, but returns an error if used on
avalue, e.g. integer! pair! tuple! :

>> get 'print
== make native! [[
"Output...

>> get 'get
== make native! [[
"Return...

>> a: 7
1 7
>> get
== 7

a

>> a: [7 + 2]
== [7 + 2]

>> get 'a
== [7 + 2]

>> get 8
*** Script Error: get does not allow integer! for its word argument

action! m0|d Red-by-example MyCode4fun

mold turns a datatype! (i.e. a block!, aninteger! a series! etc.) into a string
and returns it:

https://www.helpndoc.com/help-authoring-tool
http://www.red-by-example.org/#get
http://www.red-by-example.org/#mold
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-mold-returns-string-representation-of-a-value.

Helpin' Red

>> type? 8
== integer!

>> type? mold 8
== string!

>> print [4 + 2]

>> print mold [4 + 2]
[4 + 2]

Refinements

lonly - Exclude outer brackets if value is a block!

/all - Return value in loadable format

[flat - Exclude all indentation

/part - Limit the length of the result, where limitis an integer!

- form Red-by-example MyCode4fun

form also turns a datatype! into a string, but depending on the type, the resulting text might
not contain extra type information (suchas []{} and ") as would be produced by mold.

Useful for String and text manipulation.

Red []
print "--------- MOLD---------- !
print nmold {M/ house

is a very

funny house}
print "--------- FORM - -------- !
print form{M house

is a very

funny house}
print "--------- MOLD---------- !
print nold [3 5 7]
print "--------- FORM - -------- !
print form[3 5 7]

--------- MOLD- - - == - - - - -

--------- FORM- - - - - -----
My house

IS a very

funny house

68 /349

http://www.red-by-example.org/#form
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-now-time-append-and-form-
https://ungaretti.gitbooks.io/red-language-notebook/content/string-and-text-manipulation.html

Allows the refinement /part to limit the number of characters.

Main uses for mold and form:

mold is basically used to turn a series into code that can be saved and interpreted later

form is basically used to generate regular text from a series

>> a: [b: drop-down data["one" "two" "three"][print a/text]]
== [b: drop-down data ["one" "two" "three"] [print a/text]]

>> mold a
== {[b: drop-down data ["one" "two" "three"] [print a/text]]}

>> form a
== "b drop-down data one two three print a/text"

MEE 77 Red-by-example

Prints a word and the value it refers to, in molded form.

>> cat: 33
== 33

>> ?? cat
cat: 33

e DrODE Red-by-example MyCodessun

probe prints its argument without evaluation but also returns it. Remember that print
evaluates its argument. probe prints and returns the argument "as itis", so to speak.
it may be used for debugging as a way of showing code (by printing) without changing it.

>> print [3 + 2]
5

>> probe [3 + 2] [3 + 2]
== [3 + 2]

>> print probe [3 + 2]
[3 + 2]

http://www.red-by-example.org/#xqmxqm
http://www.red-by-example.org/#probe
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-print-prin-probe-space-

native! reduce Red-by-example MyCode4fun

Evaluates expressions inside a block and returns a new block with the evaluated values.
Take a look at the chapter about evaluation.

>> a: [3+52 -89 > 3]
== [3+52-89 > 3]

>> reduce a
== [8 -6 true]

>> b:[3+52+97 >2([6+63>9]]
== [3+52+97>21([6+63>9]]

>> reduce b
== [8 11 true [6 + 6 3 > 9]] ;it does not evaluate
expressions of blocks inside blocks

>> b
== [3+4+52+97>2][6+63>9]] ;the original block remains
unchanged.

/into => Put results in out block, instead of creating a new block.

Here | quote Vladimir Vasilyev (@9414):

" Imagine that block is a piece of paper, and some words are written on it. Initially they are
just scribbles and sets of letters with symbols - "London" is a 6-letter word. But if you "infer"
their meaning, then they become something else - London is the capital of Great Britain.

This is kinda the same with Red. [a] is a list of paper with one word written on it, reduce
"infers" the meaning of all words (of all expressions, to be specific), and a brings forward
its meaning."

>> London: "the capital of Great Britain"
== "the capital of Great Britain"

>> paper: [London]
== [London]

>> paper
== [London]

>> reduce paper ; reduce "returns" evaluation result.
== ["the capital of Great Britain"]

http://www.red-by-example.org/#reduce
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-reduce-

Helpin' Red

>> probe paper

[London] ; this is "returned" (could be assigned to a word, for
example).

== [London] ; this is the "output" of probe (printed).

>> print paper ; print reduces (evaluates) and prints.

the capital of Great Britain

>> type? first paper
== word!

>> type? first reduce paper
== string!

function! CO”eCt and keep Red-by-example MyCode4fun

Collectin a new block all the values passed to keep function from the body block.
In other words: creates a new block keeping only the values determined by keep, usually
values that fulfill some condition.

Red []
a: [11 "house" 34.2 "dog" 22]

b: collect |
foreach elenent a [if string? elenent [keep el enent]]

]
print b

house dog

/into => Insertinto a buffer instead (returns position after insert).

syntax: collect/into [........] <existing output block>

Red []

c: ["one" "two"]

a: [11 "house" 34.2 "dog" 22]
collect/into [

foreach elenent a [if scalar? elenment [keep el enent]]

] c
print c

7117349

http://www.red-by-example.org/#collect
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-collect-compose-

one two 11 34.2 22

native! CO m p O Se Red-by-example MyCode4fun

Returns a copy of a block, evaluating only paren! (things inside parenthesis).
Compose is very important for the DRAW dialect;

Red []

a: [add 3 5 (add 3 5) 9 + 8 (9 + 8)]
print conpose a
probe compose a

8 8 17 17
[add 3589 + 8 17]

/deep => Compose nested blocks.

Red []

a: [add 3 5 (add 3 5) [9 + 8 (9 + 8)]]
probe conpose a
probe conpose/ deep a

[add 358 [9 + 8 (9 + 8)]]
[add 3 58 [9 + 8 17]]

lonly => Compose nested blocks as blocks containing their values.
/into => Put results in out block, instead of creating a new block.

syntax: compose/into [........] <existing output block>

Red []

a: [add 3 5 (add 3 5) 9 + 8 (9 + 8)]
b: []

compose/into a b

probe b

[add 3 5 8 9 + 8 17]

< Previous topic Next topic >

http://www.red-by-example.org/#compose
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-collect-compose-

Helpin' Red

Free help authoring tool

Math and logic

Most of Red's math and logic is usual, except maybe the order of evaluation.

Interesting notes:

¢ inputto Red may use a period or a coma as decimal separator for float!:

>> 5,5 + 9.2 ; notice the coma in the first number and the period
in the second
== 14.7 ; Red always uses a period for its output of floats

e if youwant to use apostrophes for readability, Red ignores them:

>> 5'420'120,00 * 2
== 10840240.0

e you may evaluate strings using do:

>> do "2 + 5"
==7

Below | list the operators (words) used for calculations, adding notes that | find useful. Most
of them have no need for a detailed description.

Math

The basics:

The following group have a both a functional (e.g. add) and an infix operator (e.g. "+") .
They accept number! char! pair! tuple! or vector! as arguments (except power?).

Note that if you use the functional operator, it goes before the operands (e.g.: 3 + 4 <=>
add 3 4).

731349

https://www.helpndoc.com/help-authoring-tool
https://ungaretti.gitbooks.io/red-language-notebook/content/evaluation.html

Helpin' Red

Il try to give examples using more complex datatypes than integers and floats:

geien add or op +

>> add 3x4 2x3
== 5x7

>> now/time + 0:5:0 ; added five minutes to current time

== 7:16:27

gefiem subtract or op -

>> subtract 33 13
== 20

>> 3.4.6 - 1.2.1
2.2.5

>> now/month - 3 ;is october now
==7

gefiem multiply or op *

>> multiply 3x2 2x5
== 6x10

> 2.3.4 * 3,7.2
== 6.21.8
&eton divide or op /

>> divide 3x5 2
== 1x2 ;truncate result because pair! is made of integer!

>> divide 8 3 ;truncate result because both are integer!
==2

>> 8 / 3.0 ;3.0 is a float! so result is float!
== 2.666666666666667

&efign power or op **
>> 3 ** 3

== 27

el absolute

74 1349

Helpin' Red

Evaluates an expression and returns the absolute value, that is, a positive number.

>> absolute 2 - 7

&fionl negate
Invert the signal of a value, that is: positive <=> negative

>> negate 3x2
== -3x-2

float! p |

3,141592...

geien random

Returns a random value of the same type as its argument.

If argument is an integer, returns an integer between 1 (inclusive) and the argument
(inclusive).

If argument is a float, returns a float between O (inclusive) and the argument (inclusive).

If the argument is a series, it shuffles the elements.

>> random 10
==2

>> random 33x33
== 13x23

>> random 1
==1

>> random 1.0
== 0.07588539741741744

>> random "abcde"
== "cedab"

>> random 10:20:05
== 8:02:32.5867693

Refinements:

/seed - Restart or randomize. I think the use of this is if your random function is called many
times within a program. In this case it may not be so random unless you reestart it with a

75 /349

seed.
/secure - TBD: Returns a cryptographically secure random number.

lonly - Pick a random value from a series.

>> random/only ["fly" "bee" "ant" "owl" "dog"]
e II_FlyII

>> random/only "aeiou"
e #Iloll

action! F'oOun d

Returns the nearest integer value. Halves (e.g. 0,5) are rounded away from zero by default.

>> round 2.3
== 2.0

>> round 2.5
== 3.0

>> round -2.3
== -2.0

>> round -2.5

== -3.0

Refinements:

/to - You supply the "precision” of your rounding:

>> round/to 6.8343278 0.1
== 6.8

>> round/to 6.8343278 0.01
== 6.83

>> round/to 6.8343278 0.001
== 6.834

leven - Halves (e.g. 0.5) are rounded not "up" as default, but towards the even integer.

>> round/even 2.5
== 2.0 s;hot 3

/down - Simply truncates the number, but keeps the number a float!.

>> round/down 3.9876
== 3.0

>> round/down -3.876
== -3.0

/half-down - Halves round toward zero, not away from zero.

>> round/half-down 2.5
== 2.0

>> round/half-down -2.5
== -2.0

floor - Rounds in negative direction.

>> round/floor 3.8
== 3.0

>> round/floor -3.8
== -4.0

/ceiling - Rounds in positive direction.

>> round/ceiling 2.2
== 3.0

>> round/ceiling -2.8
== -2.0

/half-ceiling - Halves round in positive direction.

>> round/half-ceiling 2.5
== 3.0

>> round/half-ceiling -2.5
== -2.0

native! Sq uare-root

Takes any number! as argument.

Remainders etc.:

ggion remainder or op // (* see "%" operator below)

Takes number! char! pair! tuple! and vector! as arguments. Returns the rest of dividing
the first by the second value.

>> remainder 15 6
==3

>> remainder -15 6
== —3

>> remainder 4.67 2
== 0.67

>> 17 // 5
==2

>> 4.8 // 2.2
= 0.3999999999999995

op! %0

Returns what is left over when one value is divided by another. Seems to me as the same
as remainder, look at the examples:

>> remainder 11x19 3
== 2x1

>> 11x19 % 3
== 2x1

>> 11x19 // 3

*** Script Error: cannot compare 2x1 with © 5 WHAT?!
*** Where: <

*¥** Stack: mod

fmeisn modulo

From the documentation: "Wrapper for MOD that handles errors like REMAINDER.
Negligible values (compared to A and B) are rounded to zero". Can't really figure this one
out.

>> modulo 9 4
==1

>> modulo -15 6
==3

>> modulo -15 -6

i 3
>> modulo -15 7 ;2927°°
== 6
>> modulo -15 -7 ;2°9°9°
—— 6

Logarithms etc.:

fligieR exp

Raises € (the natural number) to the power of the single argument.

native! |Og -10

Returns the logarithm base 10 of the argument.

native! | (@) g - 2

Returns the logarithm base 2 of the argument.

native! | (0] g -e

Returns the logarithm base € of the argument.

Trigonometry:

All the trigonometric functions with long names (arccosine, cosine etc) use degrees as
default, but accept the refinement /radians to use this unit. The short name versions (acos,
cos etc.) take radians as arguments and require it to be a number!

[igiBH aCOS or haivel arccosine

[REIBE aSin or haivel arcsine

g atan or haivel arctangent

Returns the trigonometric arctangent.

fifetionl atan2 or haivel arctangent2

Returns the angle of the point y/x in radians, when measured counterclockwise from a
circle's x axis (where 0x0 represents the center of the circle). The return value is between -
pi and +pi.

[iEE COS or haivel COSIiNe

fifgionl SiN or hatvel SiNe

fiiietionl tan or hatvel tangent

Extras:

native! [TNaX

Returns the greater of two arguments. Arguments may be scalar! or series!

I'm not sure how it selects the greater series, but is seems to choose the series with the
first greater value from left to right.

>> max 8 12
== 12

>> max "abd" "abc"
— Ilabdll

>> max [1 2 3] [3 2 1]
== [3 2 1]

>> max [1 2 99] [3 2 1]
== [3 2 1]

Ina pair! comparison, it returns the greater for each element:

>> max 12x6 7x34
== 12x34

native! /M | n

Returns the smaller of two arguments. Notes for max apply here too.

action! O d d ?

Returns true if argument (integer!) is odd, and false otherwise.

&tionl even?

Returns true if argument (integer!) is even, and false otherwise.

native! POS itive?

true if greater than zero. Note: false if zero.

native! N€Q ative?

true if less than zero. Note: false if zero.

nativel Z€ro?

true only if zero.

fumReienl math

Evaluates a block! using the normal mathematical rules of precedence, that is, divisions
and multiplications are evaluated before additions and subtractions and so on. As of
november 2018, math dialect unfinished and may produce unexpected results!

filieten Within?

It has 3 arguments of the pair! type. The firstis a point's coordinates (origin in the upper left
corner). The other two describe a rectangle, the firstis its upper left origin, and the second
is the width and height. If the pointis inside or at the edge, returns true, otherwise

returns false.

natvel NaN?

Returns true if the argument is 'not a number',otherwise false.

natvei NaN

Returns TRUE if the number is Not-a-Number.

fiifctionl &.-an

Returns the appropriate variant of "a" or "an" (simple, vs 100% grammatically correct).

Logic

geigil and~ or opt and (infix)
native! equal? or op =

naivel greater-or-equal? or op >=

naive! greater? or op >

natve! lesser-or-equal? or op <=

natvel lesser? or op <

native! NOt

naive NOt-equal? or op <>

actionl OI'~ or op! OrF (IanX)

natvel SaAmMe? or op =7

Returns true if the arguments refer to the same data (object, string etc.), that is, it they both
refer to the same space in memory.

>> a: [1 2 3]

== [1 2 3]

>> b: a ; b points to the same data as a
== [1 2 3]

>> a=?b

== true ; they are the same

>> ¢: [1 2 3]
== [1 2 3]

>> ¢ =? a ; ¢ is equal to a, but is not the same data in

memory .
== false

natvel Strict-equal? or op ==

Returns true if the arguments are exactly equal, with same datatype same lower-
casel/uppercase (strings) etc.

>> a: "house
>> b: "House
> a=>b

== true

>> a ==
== false

< Previous topic Next topic >

Create help files for the Qt Help Framework

Other bases

native! tO'h eX Red-by-example MyCode4fun

Converts an integer! to a hex issue! datatype (with leading # and 0's).

>> to-hex 10
== #000VVVA

>> to-hex 16
== #00000010

>> to-hex 15
== #000V0OOF

Isize => Specify number of hex digits in resullt.

>> to-hex/size 15 4
== #0OO00F

>> to-hex/size 10 2
== #0OA

native! en b aSG and native! d eb ase, Red-by-example MyCode4fun

These are used do code and decode binary-coded strings.
These are not for number conversion and, honestly, | don't understand the use for them, but
here is how they work:

>> enbase "my house"
== "bXkgaG91lc2U="

>> probe to-string debase "bXkgaG91lc2U="
"my house"
== "my house"

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://www.red-by-example.org/#to-hex
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-to-hex-
http://www.red-by-example.org/#enbase
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-enbase-debase-to-string-

/base => Binary base to use. It may be 64 (default), 16 or 2.

>> enbase/base "Hi" 2
== "0100100001101001"

>> probe to-string debase/base "0100100001101001" 2
"Hi"
== IIHiII

native! d eh eX Red-by-example

Converts URL-style hex encoded (%xx) strings.

>> dehex "www.mysite.com/this%20is%20my%20page"
== "www.mysite.com/this is my page" ; Hex 20 (%20) is space

>> dehex "%33%44%55"
== "3DU"
; %33 1s hex for "3", %44 is hex for "D" and %55 is hex for "U".

Bitwise functions:

Bitwise functions work at the binary level of values:

op! >> Red-specs Red-by-example

right shift - documentation says: "lowest bits are shifted out, highest bit is duplicated".

>> 144 >> 2
== 36

| 1|u| u|1| u|u| u|u| 144

[ofofsfofofsfofo] 36

| could not figure out how to duplicate the highest bit ifit's 1. I tried 32 bit words, but Red
converts them to floats.

op! << Red-specs Red-by-example

http://www.red-by-example.org/#dehex
https://github.com/meijeru/red.specs-public/blob/master/specs.adoc#84-bitwise-functions
http://www.red-by-example.org/#xgtxgt
https://github.com/meijeru/red.specs-public/blob/master/specs.adoc#84-bitwise-functions
https://github.com/meijeru/red.specs-public/blob/master/specs.adoc#84-bitwise-functions
http://www.red-by-example.org/#xltxlt

left shift - highest bits are shifted out, zero bits are added to the right.

>> 17 << 1

== 34

|ﬂ| ﬂ|ﬂ| 1|u| ﬂ|ﬂ| 1| 17
loJof1][ofofof1][o] 34

op! >>> Red-specs Red-by-example

logical shift - lowest bits are shifted out, zero bits are added to the left. | could not figure
out how this is different from >>.

opand & and~ Red-specs Red-by-example

>> 27 and 50
== 18

[oJolo[afafoa]a] 27

[oJol1]2]ofo]2]o] s0

and [o|o|o|1|ofo|1|o]| 18

The functional version (not infix) of and is and~

opl OI' & OIF~ Red-specs Red-by-example

>> 27 or 50
== 59

[oJolo[afafoa]a] 27

[oJol1]2]ofo]a]o] s0

or |o|o| 1|1| 1|o| 1|1| 59

The functional version (not infix) of or is or~

op! XOI' & XOI~ Red-specs Red-by-example

>> 27 xor 50
== 41

[o]o]o[afa]ofa]a] 27

[oJol1]2]ofo]2]o] s0

https://github.com/meijeru/red.specs-public/blob/master/specs.adoc#84-bitwise-functions
http://www.red-by-example.org/#xgtxgtxgt
https://github.com/meijeru/red.specs-public/blob/master/specs.adoc#84-bitwise-functions
http://www.red-by-example.org/#and
https://github.com/meijeru/red.specs-public/blob/master/specs.adoc#84-bitwise-functions
http://www.red-by-example.org/#or
https://github.com/meijeru/red.specs-public/blob/master/specs.adoc#84-bitwise-functions
http://www.red-by-example.org/#xor

Helpin' Red

xor |o]of1]of1]ofof1] @

The functional version (not infix) of xor is xor~

action! Complement Red-specs Red-by-example

todo -
todo
< Previous topic Next topic >

88 /349

https://github.com/meijeru/red.specs-public/blob/master/specs.adoc#84-bitwise-functions
http://www.red-by-example.org/#complement

Helpin' Red

News and information about help authoring tools and
software

Cryptography

native! C h eC kS u m Red-by-example

Computes a checksum, CRC, hash, or HMAC.
Arguments may be string! binary! or file!

Red []

print "----------- MD5 c-cmmmmmmemeo - "

print checksum "y house in the mddle of our street" 'MNMD5
print "---------- SHAL ---cmcmmmmemmn "

print checksum "y house in the mddle of our street” 'SHAl
print "--------- SHA256 -----ccecaenan- "

print checksum "y house in the mddle of our street” 'SHA256
print "--------- SHA384 - ------------ "

print checksum "y house in the mddle of our street” 'SHA384
print "--------- SHA512 -----eemea - "

print checksum "ny house in the mddle of our street” 'SHA512
print "--------- CRC32 -cccmmmmeeeeae "

print checksum "y house in the mddle of our street” 'CRC32
print "---------- TCP - cccmmmeeee oo "

print checksum "y house in the mddle of our street" 'TCP

----------- MD5 ====-=--=a-n--

---------- i, memmemmmmommoe
#{E97AE5E15E8EC1B87BO113E6A4758AAAE6E26901}

--------- SHA256 --------------
#{
98E2A2BFF328D893161CA6B6F50BA64D544026BD8C24C2022BE7007832714BA4
}

--------- SHA384 ---------oo--

#{

2EAEA11D12F4CE8BE3CDE33DDEDO8765BFDCE1F277CF8E2126F7B1B6D4AD17E31
96D05D2427576C348A0FECF63537B7D3

}

89 /349

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com
http://www.red-by-example.org/#checksum

fwith

--------- SHAS512 ==--====c===-

#{

OFAA749EAAEC728A6D821B85AC49CBE96DCES9IE 3FDCE1005A3256A4CCE6797A
11603E9DB6B870C166057CF5EFBABB2365A87F 37CDF 2C8C1BF86DC8CE6DIA8CI

--------- CRC32 ===--=mc-cenn-

=> Extra value for HMAC key or hash table size; not compatible with

TCP/CRC32 methods.

I believe hash is notimplemented in Red 0.63 and | could not figure out how HMAC works.

< Previous topic

Next topic >

Helpin' Red

Single source CHM, PDF, DOC and HTML Help creation

Blocks & Series

Don't miss the series' page at Red-by-example.

Blocks

Red is built on "blocks". Essencially anything delimited by brackets is a block: [one block],
[another block [block within a block]]

Series

Series are group of elements. They are an essential topic on Red Programming. In fact,
data and even Red programs themselves are series. The elements of a series can be
anything inside the Red lexicon: data, words, functions, objects, and other series.

>> myFirstSeries: ["John" "Mary" 33 55 [9.2 8]]
== ["John" "Mary" 33 55 [9.2 8]]

Strings etc.

Notice that strings are treated by Red as series of characters, and so the techniques used
to manipulate series are also used for string operations. However, since string
manipulation is so important, there is a special Strings and text manipulation chapter.

Actually, a lot of datatypes are also series that can be manipulated with the built-in
functions (commands) described in the following chapters.

Arrays
Toomas Vooglaid's matrix DLS

Other languages have a data type called array. It is not difficult to realize that a one
dimensional array is simply a series (not really, see comment), and multi-dimensional
arrays are series that contain other series as elements.

Here is an example of a 3 x 2 array:

>> a: [[1 2][3 4][5 6]]
== [[1 2] [3 4] [5 6]]

To access its elements, you may use "/

91 /349

https://www.helpndoc.com/help-authoring-tool
http://www.red-by-example.org/series.html
https://github.com/toomasv/matrix
https://gitter.im/red/help?at=5c361b8057c6883f9b8a21f8

>> a/l
== [1 2]

>> a/l/1

>> a/3/2

The following script creates a 5 by 5 two dimensional array, inserts a number in it and
prints some results:

Red [needs: 'view

size: 5x5

matri x: nmake bl ock! sizel/x

| oop sizelx |
row. make bl ock! sizely
| oop sizely [append row none]
append/only matrix row

]

newline/all matrix on

matrix/ 3/ 4: 23
probe matrix
print matrix/3/4

[
[none none none none none]
[none none none none none]
[none none none 23 none]
[none none none none none]
[none none none none none]

]

23

>>

Using variable as keys for series:

Suppose you want to refer to the 4th element of a series using a value associated with a
word. You can't use the word directly, you must use the :word syntax:

>> a: ["me" "you" "us" "them" "nobody"]

== ["me" "you" "us" "them" "nobody"]

>> b: 4

== 4

>> a/b ;this does not work as expected!!!
== none

>> a/:b ;this works!

== "them"

It seems words are not evaluated by default to allow their use as keys.

Helpin' Red

By the way, this also works:

>> a/(b) ;this also works!
== Ilthemll
< Previous topic Next topic >

93 /349

Helpin' Red

Free EPub producer

Series navigation

e The first element of a series is called "head". As we will see, it may not be the "first"
as we manipulate the series;

e AFTER the last element of a series there is something called "tail". It has no value.

e Everyseries has an"entry index". The best definition of it is "where the usable part of
this series begin". Many operations with series have this "entry index" as a
starting point. You can move the entry index back and forth to change the result of
your operations.

e Every element of the series have an index number, starting with 1 (not zero!) at the first
element.

e Starting from the position of the entry index, the elements of the series have an alias:
"first" for the first, "second" for the second and so on until "fifth".

Note: | made up the name "entry index". It is not in the documentation. | have seen the
"entry index" being called just "index", but I dislike that, as it may cause confusion with the
index number of the elements. It is a somewhat subtle concept. Noworto @noworto _twitter
suggest it should be called "first index" since this index always points to the element
returned by first command, noting that head index will always be 1. This makes sense,
and | may change it in the future.

- h ead 7 - ta| I ’) - | n d eX’7 Red-by-example

These built-in functions return information about the position of the entry index. If the entry
index is at the head, head? returns true, otherwise false. The same logic applies to tail?
. index? returns the index number of the entry index location.

The following examples will make their use clear.

ant" "bee" :

Lets create the series s having the strings "cat" "dog" "fox" "cow" "fly

>> s: [llcatll lldogll llfox cowll llflyll llantll llbeell]
== ["cat" "dog" "fox" "cow" "fly" "ant" "bee"]

We will have something that look like this:

94 / 349

https://www.helpndoc.com/create-epub-ebooks
http://www.red-by-example.org/index.html#cat-s01

Helpin' Red

order: ;’""""—"—'é? ------- -E second third fourth fifth
index: | 1 i 2 3 4 5 G 7
[([_cat |{l dog | | fox | | cow | [fiy | | ant | [bee | EzZ A]
] entry nex |
>> head? s
== true

>> index? s
==1

>> print first s
cat

- h ead - ta| | Red-by-example on head Red-by-example on tail

head moves the entry index to the first element of the series, the head.
tail moves the entry index to position after the last element of the series, the tail.

head and tail by themselves don't change the series, head only returns the whole series

and tail returns nothing. To change the series you must do an assignment, e.g. list:
head list

- neXt Red-by-example

next moves the entry index one element towards the tail. Notice

that next only returns the changed series, does not modify it. Therfore, simply

repeating next on the same series will not make the entry index go further than the
second position, because you would be doing it on the original series, where the entry
index is still over the first element. So for most practical uses, we reassign the series to a
word (variable). In our example it would be: s: next s.

>> s: next s
== ["dog" "fox" "cow" "fly" "ant" "bee"]

Now we have:

95 /349

http://www.red-by-example.org/index.html#head
http://www.red-by-example.org/index.html#tail
http://www.red-by-example.org/index.html#next

Helpin' Red

order: : first : second third fourth fifth
index: | 2 | 3 4 5 L] [

[‘L_dog il fox | | cow | [fiv | | ant | [bee | EZ Z

i
- ey
o
LS
=

next

>> print s
dog fox cow fly ant bee

>> head? s
== false

>> print first s
dog

>> index? s

Notice that even though the first element is now "dog", the index remains 2!

- baCk Red-by-example

back is the opposite of next: moves the entry index one element towards the head. If you
use back inour s series "cat" is brought back from oblivion into the series again! It was
never deleted!

This means that Red did not discard any part of the old s. This is part of the peculiarities of
Red: the data remains there, embedded in the code.

After you moved forward the index of our series s, even if you assign it to another word
(variable) like b(b: s) you can still perform back and negative skip operations on b and
retrieve the "hidden" values of s because b points to the same data as s.

If you want to avoid that, you must create your new variable using copy

Like I mentioned before, in Red, unlike other languages, the variable (word) is assigned to
the data and not the other way around.

- Sk|p Red-by-example MyCode4fun

Moves the entry index a given number of elements towards the tail.

96 / 349

http://www.red-by-example.org/index.html#back
http://www.red-by-example.org/#skip
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-skip-

......................

order: i first i second

indes: : 5 i g 7

>> s: skip s 3
== ["fly" "ant" "bee"]

>> print s
fly ant bee

>> print first s
fly

>> print index? s
5

If the number of skips is larger then the number of elements in the series, the entry

index stays at the tail.

>> s: skip s 100
== []

alias:
index:

skip 100

>> tail? s
== true

>> index? s
==8

You can do negative skips to restore elements of the series:

>> s: skip s -4
== ["cow" "fly" "ant" "bee"]

——————————————————————

|
L) i~
——3 | Entry index |

order:

index:
[L cow [0 fiy | | _ant | [bee | Bz |
pointer _— Skip . —

>> print first s
cow

>> print index? s
4

< Previous topic Next topic >

Create help files for the Qt Help Framework

Series "getters"

There are so many commands to manipulate series that | have split them into two chapters:
one for the built-in functions (commands) that get information from a series, that | calll
"getters”, and another for those that change the series directly.

The "getter" commands only return values, without altering the series. Notice that any
"getter" command may be used to change the series if you reassign the series to the
returned value.

action! I en g t h ’) Red-by-example MyCode4fun

Returns the size of a series from the current index to the end.

>> a: [1 3579 11 13 15 17]
== [1357 911 13 15 17]

>> length? a

==9

>> length? find a 13 ;see the command "find"

== 3 ;from "13" to the tail there are 3
elements

- em ptyf) Red-by-example MyCode4fun

Returns true if a series is empty, otherwise returns false.

>> a: [3 4 5]
== [3 4 5]

>> empty? a
== false

>> b:[]
== []

>> empty? b
== true

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://www.red-by-example.org/#lengthxqm
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-length-returns-the-number-of-values-in-the-series.
http://www.red-by-example.org/#emptyxqm
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-empty-check-if-series-is-empty.

action! ple Red-by-example MyCode4fun

Picks the value from a series at the position given by the second argument.

pick [00®©06] 4==

>> pick ["cat" "dog" "mouse" "fly"] 2
== Ildogll

>> pick "delicious" 4
— #Ilill

action! at Red-by-example MyCode4fun

Returns the series at a given index.

>> at ["cat" "dOg" II_FOXII "COW" ll_Flyll "ant" "bee"] 4
—= [“COW“ |l_F1yll "ant" “bee“]

action! Sel eCt and &ction! f| n d Red-by-example on select Red-by-example on find MyCode4fun on select
My Code4fun on find

Both search a series for a given value. The search goes from left to right, except
if /reverse or /last is used.

When they find a match:

e select returns the next element from the series after the match;

>> Select ["cat" "dOg" II_FOXII "COW" ll_Flyll "ant" "bee"] ["COW"]
- "'Fly"

e find returns a series that starts in the match and goes all the way to tail.

>> _Find [llca.tll "dOg" ll_Foxll "COW" ll_Flyll llan.tll "bee"] ["COW"]
— ["COW" ll_Flyll llantll "bee"]

An example of select:

http://www.red-by-example.org/#pick
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-text-list-pick-
http://www.red-by-example.org/#at
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-below-text-font-size-font-color-at-and-bold-
http://www.red-by-example.org/#select
http://www.red-by-example.org/#find
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-select-Find-a-value-in-a-series-and-return-the-next-value-or-NONE.-
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-alter-find-

>> movies: [
title "Gone with the wind"
star "Scarlet Something"
quality "pretty good"
age "very old"
1
>> print select movies 'quality
pretty good

Is interesting to note that a "shortcut" for select is the path notation:
>> print movies/star

Scarlet Something

Ipart

Limits the length of the area to be searched to a given number of elements. In the image
below, the search area is highlighted:

>> select/part ["cat" "dog" "fox" "cow" "fly" "ant" "bee"] ["cow"]
3

== none

>> select/part ["cat" "dog" "fox" "cow" "fly" "ant" "bee"] ["fox"]
3

cow

>> find/part ["cat" "dog" "fox" "cow" "fly" "ant" "bee"] ["cow"] 3
== none
_Find/par‘t [llcatll lldogll II_FOXII llcowll ll_Flyll llantll llbeell] [llcowll]

["COW" ll_Flyll llantll llbeell]

lonly

Treat a series search value as a block, so it looks for a block inside the search area.

>> find/only [llcatll lldogll llfoXll llcowll llflyll llantll llbeell] [llcowll
"fly"] ;finds nothing

== none

>> findlonly [llcatll lldogll llfoxll [llcowll llflyll] llantll llbeell] [llcowll
"fly"] ;finds the block
== [["cow" "fly"] "ant" "bee"]

/case

To perform a case sentive search. Upper and lower case become relevant.

Iskip

Treats the series as a set of records, where each record has a fixed size. Will only try to
match against each first item of such a record.

I highlighted below the "records” in yellow and the match in red:

>> find/Skip [llcatll lldogll llfoxll lldogll lldogll lldogll llcowll lldogll
ll_Flyll lldogll llantll lldogll llbeell lldogll] [lldogll] 2
== ["dog" "dog" "cow" "dog" "fly" "dog" "ant" "dog" "bee" "dog"]

/same

Uses same? as comparator. This comparator returns true if the two objects have the same
identity:

>> a: "dog" b: "dog"
== "dog
>> same? a b

== false ;each is associated with a string with "dog", but not
the same string.

>> b: a

== "dog"

>> same? a b ;both refer to the very same string

== true

Nlast

Finds the last occurrence of the key, from the tail

>> find/last [33 11 22 44 11 12] 11
== [11 12]

Ireverse

The same as /1last , but from the current index that can be set, for example by the built-in

function at.

find/tail

Normally find returns the result including the matched item. With /tail the returned is the
part AFTER the match, similarly to select

>> 'Find ["Cat" "dOg" "'FOX" "COW" "'Fly" "ant" "bee"] "'Fly"
— [ll_Flyll llantll llbeell]

>> _Find/tail ["cat" "dOg" II_FOXII "COW" ll_Flyll "ant" "bee"] ll_Flyll
—= [llantll “bee“]

find/match

Match always compares the key to the beginning of the series. Also, the result is the part
AFTER the match.

>> find/match ["cat" "dog" "fox" "cow" "fly" "ant" "bee"] "fly"
== none ;nho match

>> find/match ["cat" "dog" "fox" "cow" "fly" "ant" "bee"] "cat"
== [Ildogll Il_FOXIl “COW“ Il_Flyll Ilantll Ilbeell] ;ma_tch

- |aSt Red-by-example MyCode4fun

Returns the last value of the series.

>> laSt ["Cat" "dOg" "'FOX" "COW" "'Fly" "ant" "bee"]
— llbeell

- extract Red-by-example MyCode4fun

Extracts values from a series at given intervals, returning a new series.

>> extract [123 4567 89] 3
== [1 4 7]

>> extract "abcdefghij" 2
— Ilacegill

http://www.red-by-example.org/#last
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-last-returns-the-last-value-in-the-series.
http://www.red-by-example.org/#extract
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-extract-extract-index-

findex

Extracts values starting from a given position.

finto

Append the extracted values to a given series.

>> newseries: [] ;creates empty series - necessary as extract/into
does not initialize a series

== []

>> extract/into "abcdefghij" 2 newseries
e [#Ilall #Ilcll #Ilell #Ilgll #Ilill]

>> extract/into ["cat" "dog" "fox™ "
newseries

e [#Ilall #Ilcll #Ilell #Ilgll #Ilill Ilcatll Il_FOXIl Il_Flyll Ilbeell]

COW" ll_Flyll "ant" "bee" llowlll] 2

action! CO py Red-by-example MyCode4fun

See Copying chapter.

Sets

native! u n | 0 n Red-by-example MyCode4fun

Returns the result of joining two series. Duplicate entries are only included once.

>> union [3 4 5 6] [5 6 7 8]
== [3456 7 8]

Icase

Use case-sensitive comparison

Iskip

Treat the series as fixed size records.

>> union/case [A a b c] [b ¢ C]

http://www.red-by-example.org/#copy
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-text-list-copy-data-
http://www.red-by-example.org/#union
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-Union-returns-the-union-of-2-data-sets.

== [Aab c (]

With the /skip refinement, only the first element of each group (size given by argument) is
compared. If there are duplicate entries, the record of the first series is kept:

>> union/skip [abccdeef f] [ajkcymez2z] 3
== [abccdeeff]

>> union/skip [k bc cdeef f] [ajkcymezz] 3
== [k bccdeeffaijk]

native! d |ﬂ:eren Ce Red-by-example

Returns only the elements that are not present in both series.

>> difference [3 4 5 6] [5 6 7 8]
== [3 4 7 8]

Icase

Use case-sensitive comparison

Iskip

Treat the series as fixed size records.

native! | n ters eCt Red-by-example

Returns only the elements that are present in both series:

>> intersect [3 4 5 6] [5 6 7 8]
== [5 6]

Icase

Use case-sensitive comparison

Iskip

Treat the series as fixed size records.

native! Red-by-example Code4fun
UNIQUE Red-by-example MyCodefun

http://www.red-by-example.org/#difference
http://www.red-by-example.org/#intersect
http://www.red-by-example.org/#unique
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-unique-removes-all-duplicates.

Returns the series removing all duplicates:

>> unique [1 2234417 7]
== [12 34 7]

Allows the refinements:
Iskip

Treat the series as fixed size records.

native! eXCI u d e Red-by-example

Returns a series where the second argument elements are removed from the first
argument series.

>>a: [123456 7 8]
== [123456 7 8]

>> exclude a [2 5 8]
==[1346 7]

>> a
==[123456 7 8]

I could not find it in documentation, but I think the returned series is a list of non-repeated
elements:

A\
A\

exclude "my house is a very funny house" "aeiou"
== "my hsvrfn"

exclude [11 223344556 6] [24]
[135 6]

\4
1 v

Icase
Use case-sensitive comparison
Iskip

Treat the series as fixed size records.

< Previous topic Next topic >

http://www.red-by-example.org/#exclude

Helpin' Red

Create help files for the Qt Help Framework

Series "changers"

These commands change the original series:

- C|eal’ Red-by-example MyCode4fun

Deletes all elements from the series.

Simply assigning " " (empty string) or zero to a series may not produce the expected
results. Red's logic makes it seem to "remember" things in unexpected ways. To really
clear it, use clear.

>> a: [11 22 33 "cat"]
== [11 22 33 "cat"]

>> clear a

== []

a
== []

- pOke Red-by-example MyCode4fun

Changes the value of a serie's element at the position given by the second argument to the
value of the third argument.

poke [00©©06] 4 @

[@Gﬂ@ﬂé]
>> x: ["cat" "dog" "mouse" "fly"]
== [Ilcatll Ildogll Ilmousell II_FlyII]

>> poke x 3 "BULL"
— IlBULLIl

>> X
— [llcatll "dOg" “BULL“ “-Fly“]

107 / 349

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://www.red-by-example.org/#clear
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-clear-to-clear-contents-of-a-string-series.
http://www.red-by-example.org/#poke
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-pick-poke-

>> s: "abcdefghijklmn™
== "abcdefghijklmn"

>> poke s 4 #"W"
== #Ilwll

>> s
== "abcWefghijklmn"

action! ap p en d Red-by-example MyCode4fun

Inserts the values of the second argument at the end of a series. Changes only the original
first series.

w [m ﬂ ﬂ' ﬂ' ﬂ E] [-ZEHIHZi

[El' 1121314 15 Hnlenie
>> X: [llcatll lldogll llmousell llf1y||]
== ["cat" "dog" "mouse" "fly"]

>> append x "HOUSE"
== ["cat" "dog" "mouse" "fly" "HOUSE"]

>> X
- [llcatll "dOg" "mouse" ll_Flyll "HOUSE"]

>> X: [llcatll lldogll llmousell llflyll]
== ["cat" "dog" "mouse" "fly"]

>> y: ["Sky" "Bull"]
== [IlSkyll “Bull“]

>> append Xx y
== [Ilcatll Ildogll Ilmousell II_FlyII Ilskyll IlBullll]

>> X
== ["cat" "dog" "mouse" "fly" "Sky" "Bull"]

>> append "abcd"™ "EFGH"
== "abcdEFGH"

/part

http://www.red-by-example.org/#append
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-now-time-append-and-form-

Helpin' Red
Limits the number of elements appended to the series.
>> append/part [llall llbll llcll] ["A" IIBII llcll IIDII IIEII] 2

== ["a" "b" "c" "A" "B"]

lonly

Appends series A with series B, but B goes in as a series (block).

>> append/only ["a" "b" "c"] ["A" "B"]
== ["a" "b" "c" ["A" "B"]]

/dup

Appends series A with series B a given number of times. I think it should not be called dup
from "duplicate" as it can triplicate, quadrupicate...

>> append/dup [llall llbll llcll] [llAll llBll] 3
— [Ilall llbll llcll IIAII IIBII IIAII IIBII IIAII IIBII]

- |nsert Red-by-example MyCode4fun

It is like append, but the addition is done at the current entry index (usually the

beginning). While append returns the series from head, insert returns it after the
insertion. This allows to chain multiple insert operations, or help calculate the length of the
inserted part, buta: insert a something will not change "a"!

insert [00@©06] [002]

[po000060806]
>> a: "abcdefgh"
== "abcdefgh"

>> insert a "000"
== "abcdefgh"

>> a
== "000abcdefgh"

109 / 349

http://www.red-by-example.org/#insert
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-insert-inserts-a-value-at-a-series-index.

Helpin' Red
insert at [0©©©00] 3 [0D2]

[e000D206000]
>> a: "abcdefgh"
== "abcdefgh"

>> insert at a 3 "000"
== "cdefgh"

>> a
== "ab000cdefgh"

Ipart

Inserts only a given number of elements from the second argument.

lonly

Allows insertion of blocks as blocks, not their elements.

/dup

Allows the insertion to be repeated a given number of times.

>> a: "abcdefg"
== "abcdefg"

>> insert/dup a "XYZ" 3
== "abcdefg"

>> a
== "XYZXYZXYZabcdefg"

- rep I aC e Red-by-example MyCode4fun

Replaces an element of the series.

replace [@086606] [0] [T]

[c0eT06]

>> replace ["cat" "dog" "mouse" "fly" "Sky" "Bull"] "mouse" "HORSE"

110/ 349

http://www.red-by-example.org/#replace
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-replace-replaces-the-search-value-with-the-replace-value-

—= [llcatll "dOg" llHORSEIl ll_Flyll llskyll llBullll]

fall

Replaces all ocurrences.

>> a: "my nono house nono is nono nice"
== "my nono house nono is nono nice"

A4
A\

replace/all a "nono
"my house is nice"

action! Sort Red-by-example MyCode4fun

Sorts a series.

sort [@®0©]| = ©0]

>>sort [843901527 6]
[0123456789]

A\
A\

sort "sorting strings is useless"
" eeggiiilnnorrsssssssttu”

/case

Perform a case-sensitive sort.

Iskip

Treat the series as fixed size records.
/lcompare

Comparator offset, block or function. (?)
Ipart

Sort only part of a series.

http://www.red-by-example.org/#sort
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-sort-sort-reverse-

Helpin' Red

/all

Compare all fields. (?)
Ireverse

Reverse sort order.
Istable

Stable sorting. (?)

- remove Red-by-example MyCode4fun

Removes the first value of the series.

remove [O0O6006]

[0@0006]

>> s: ["cat" "dog" "fox
== [Ilcatll Ildogll “'FOX“ n

cowII II_FlyII Ilant n n beell]
Cowll ll_Flyll llantll llbeell]

>> remove s
== ["dOg" II_FOXII "COW" ll_Flyll "ant" llbeell]

/part

Removes a given number of elements.

remove/part [00@©06] 2

[@006]
>> s: "abcdefghij"
== "abcdefghij"
>> remove/part s 4

== "efghij"

Notice that you can do the same with remove at [0 1 2 3 4 5] 2.

112/ 349

http://www.red-by-example.org/#remove
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-remove-remove-part-reverse-

Helpin' Red

native! rem O Ve-eaC h Red-by-example

Like foreach, it sequentially executes a block for each element of a series. If the block
returns true, it removes the element from the series:

Red []

a: ["dog" 23 3.5 "house" 45]
renmove-each i a [string? i]

print a
23 3.5 45
Red []
a: " nmy house in the mddl e of our street”
remove-each i a [i = #" "]
print a

myhouseinthemiddleofourstreet

- take Red-by-example MyCode4fun

Removes the FIRST element of a series and gives this first element as return.

>> s: [llcatll lldogll llfox" llcowll llfly" llantll llbeell]
== [llcatll "dOg" ll_Foxll "COW" ll_Flyll llantll llbeell]

>> take s

== "cat

>> s
== ["dOg" |l_F0X|l "COW" |l_F1yll "ant" “bee“]

/last

Removes the LAST element of a series and gives this last element as return.

5> ¢ ["Cat" "dOg" llfoxll "COW" llflyll "ant" llbeell]
- [llcatll "dOg" ||_F0X|| "COW" ||_Flyll "ant" "bee"]

>> take/last s
== Ilbeell

113/ 349

http://www.red-by-example.org/#remove-each
http://www.red-by-example.org/#take
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-take-take-last-take-part-

Helpin' Red

>> S
== [llcatll "dOg" |l_F0X|l |lc0wll |l_F1yll “ant“]

take/last and append can be used to perform stack (queue) operations.

Ipart
Removes a given number of elements from the start of the series and gives them
as return.

5> s¢ [llcatll "dOg" II_FOXII "COW" ll_Flyll llantll "bee"]
== [llcatll "dOg" |l_F0X|l "COW" |l_F1yll "ant" “bee“]

>> take/part s 3
== ["cat" "dog" "fox"]

>> S

—— ["COW" ll_Flyll llantll llbeell]

/deep
Documentation says "Copy nested values". | could not figure it out.

- move Red-by-example MyCode4fun

Moves one or more elements from the first argument into the second argument. Changes
both original arguments.

move [008©06] [0T2333]

[0@©06] [00D20DE

Ipart
To move more than one element.
move/part [008©00] [2023@3] 3

[e00©] [0000D2IDE

>> a: [a b c d]
== [a b c d]

>> b: [1 2 3 4]
== [1 2 3 4]

114/ 349

http://www.red-by-example.org/#move
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-move-move-part-Moves-elements-to-another-position-or-series.

>> move a b
== [b c d]

>> a
== [b c d]

>> b
== [a 12 3 4]

>> move/part a b 2
== [d]
a
== [d]
>> b

== [bcal?234]

move can be used combined with other built-in functions (commands) to move things inside
a single series. For example:

>>a: [1 2 3 4 5]
== [12 3 4 5]

>> move a tail a
== [23451]

>> move/part a tail a 3
== [5 1 2 3 4]

action! C h an g e Red-by-example MyCode4fun

Changes the first elements of a series and returns the series after the change. Modifies the
first original series, not the second.

change [0©©©006] [0T32]
[o00006] [0D2]

>> a: [1 2 3 4 5]
== [12 3 4 5]

>> change a [a b]
== [3 4 5]

http://www.red-by-example.org/#change
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-change---changes-a-value-in-a-string-or-block.

Helpin' Red

>> a
== [a b 3 4 5]

Ipart
Limits the amount to change to a given length.

lonly
Changes a series as a series.

/dup
Repeats the change a specified number of times

- al ter Red-by-example MyCode4fun

Either appends or removes an element from a series. If alter does NOT find the element
in a series, it appends it and returns true. If it finds the element, removes it and
returns false.

>> a: [llcatll "dOg" ll_Flyll llbatll llowlll]
— [llcatll "dOg" |l_F1yll "bat" |l0w1|l]

>> alter a "dog"
== false

>> a
—— [llcatll ll_Flyll llbatll llowlll]

>> alter a "HOUSE"
== true

>> a
— [n Cat n |l_F1yll n bat n "0W1" “HOUSE n]

- SW ap Red-by-example

Swaps the first elements of two series. Returns the first series, but changes both:

swap [0986000] [0T2]
[co88008] [0D2]

>> a: [1 2 3 4] b: [a b c d]

116/ 349

http://www.red-by-example.org/#alter
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-alter-find-
http://www.red-by-example.org/#swap

>> swap a b
== [a 2 3 4]

>> a
== [a 2 3 4]

>> b

== [1b c d]

With find , for example, it can be used to swap any element of two series and even
elements within a single series:

>> a: [1 2 3 4 5] b: ["dog" "bat" "owl" “"rat"]
— [Ildogll Ilbatll “OW]_" Ilr\atll]

>> swap find a 3 find b "owl"
== ["owl" 4 5]

>> a
== [1 2 "owl" 4 5]

>> b
== [Ildogll Ilbatll 3 Ilr\atll]

action! revers e Red-by-example MyCode4fun

Reverses the order of the elements of a series:

>> reverse [1 2 3]
== [3 2 1]

>> reverse "abcde"
== "edcba"

/part limits the reverse to the number of elements of the argument:
>> reverse/part "abcdefghi" 4

== "dcbaefghi™

< Previous topic Next topic >

http://www.red-by-example.org/#reverse
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-remove-remove-part-reverse-

Helpin' Red

Full-featured Kindle eBooks generator

Copying

WARNING FOR BEGINNERS: If you are assigning the value of a word (variable) to
another word (variable) in Red, COPY IT!

>> varl: var2 ;only if you are sure about it

>> varl: copy var2 ;may save you hours of debugging

- cO py Red-by-example MyCode4fun

Assigns a copy of the data to a new word.
It may be used to copy series and abjects.

Itis not used on single items such as: integer! float! char! etc. For these, we can simply
use the colon.

First lets look at a simple assignment:

a 12 | a | | data |
1

ba [b F——

>> S: ["Cat" Ildogll II_FOX cowII II_FlyII Ilantll Ilbeell]
—= [llcatll "dOg" ll_FOXll “COW“ ll_Flyll llantll llbeell]

>> b: s
== [Ilcatll Ildogll II_FOXII "CQW" Il_Flyll Ilantll Ilbeell]

>> take/part s 4

== [Ilcatll Ildogll II_FOXII "COW"]
>> b
== [Il_Flyll Ilantll Ilbeell] ;b Changes! !

Now with copy:

118/ 349

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
http://www.red-by-example.org/#copy
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-text-list-copy-data-

a: 12 | a | | data | D
| |
bcopya| b | | data |
|]

5> ¢ ["Cat" "dOg" "'FOX COW" llflyll "ant" "bee"]
- [llcatll "dOg" ll_Foxll "COW" ll_Flyll llantll llbeell]

>> b: copy s
e [Ilcatll Ildogll Il_FOX

COW“ |l_Flyll "ant" “bee“]

>> take/part s 4
== ["cat" "dog" "fox

cow"

>> b
== ["cat" "dog" "fox

cow" "fly" "ant" "bee"]

If you have a nested series (e.g. a block within your series) copy does not change the
reference to these nested series. If you want to create an independent copy in this case,
you must use the refinement /deep to create a "deep"” copy.

Ipart
Limits the length of the result, where length is a number! or series!

>> a: "my house is a very funny house"
>> b: copy/part a 8
== "my house"

ltypes

Copies only specific types of non-scalar values.

/deep
Copies nested values, as mentioned above.

< Previous topic Next topic >

Helpin' Red

Write eBooks for the Kindle

Looping

native! Ioop Red-by-example MyCode4fun

Executes a block a given number of times.
Red[]
loop 3 [print "hellol"]
hello!
hello!

hello!
>>

native! rep eat Red-by-example

repeat is the same as loop, but it has an index that gets incremented each loop
Red[]

repeat i 3 [print i]

w N -

native! fora” Red-by-example MyCode4fun

Executes a block as it moves forward in a series.

Red[]

a: ["china" "japan" "korea" "usa"]
forall a [print a]

china japan korea usa
japan korea usa
korea usa

120/ 349

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
http://www.red-by-example.org/#loop
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-loop-
http://www.red-by-example.org/#repeat
http://www.red-by-example.org/#forall
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-forall-to-read-a-block.

Helpin' Red

usa
>>

native! foreaCh Red-by-example MyCode4fun

Executes a block for each element of the series.

Red[]

a: ["china" "japan" "korea" "usa"]
foreach i a [print i]

china
japan
korea
usa
>>

native! Wh | | e Red-by-example MyCode4fun

Executes a block while a condition is true.

Red[]
i: 1
while [i < 5] [
print i
ic i+ 1
]
1
2
3
4
>>

native! Untll Red-by-example MyCode4fun

Evaluates a block until the block returns a true value.
Red[]
i: 4
until [

print i
icio- 1

121 /349

http://www.red-by-example.org/#foreach
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-foreach-to-read-a-block.
http://www.red-by-example.org/#while
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-while-
http://www.red-by-example.org/#until
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-until-

Helpin' Red

O R, N WD

native! break Red-by-example MyCode4fun

Forces an exit from the loop.

freturn

Forces the exit and sends a given value, like a code or a message, as a return value.

native! forever Red-by-example MyCode4fun

Creates a loop that never ends.

< Previous topic Next topic >

122 /349

http://www.red-by-example.org/#break
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-break-
http://www.red-by-example.org/#forever
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-forever-unview-quit-if-and-print-

Easily create Help documents

Branching

native! |f Red-by-example MyCode4fun

Executes a block if a testis true.

if <test>[block]

>> if 10 > 4 [print "large"]
large

Remember from the Datatypes chapter that everything that is not false , off or no is
considered true:

>> if "house" [print "It's true!"]
It's true!

>> if @ [print "It's true!"]
It's true!

>> if [] [print "It's true!"]
It's true!

>> if [false] [print "It's true!"] ;bizarre!
It's true!

native! u n I eSS Red-by-example MyCode4fun

Same as if not. Executes block only if a testis false.

unless <test> [block (if test false) |

>> unless 10 > 4 [print "large"]
none

>> unless 4 > 10 [print "large"]
large

https://www.helpndoc.com/feature-tour
http://www.red-by-example.org/#if
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-forever-unview-quit-if-and-print-
http://www.red-by-example.org/#unless
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-unless-

Helpin' Red

native! elth er Red-by-example MyCode4fun

A new name for the classic if-else. Executes the first block if the testis true or executes the
second block if the testis false.

either <test> [true block] [false block]

>> either 10 > 4 [print "bigger"] [print "smaller"]
bigger

>> either 4 > 10 [print "bigger"] [print "smaller"]
smaller

native! SW'tCh Red-by-example MyCode4fun

Executes the block correspondent to a given value.

Red[]

switch 20 [
10 [print "ten"]
20 [print "twenty"]
30 [print "thirty"]

]

twenty
/default

If the program does not find a match, executes a default block.

Red]

swi tch/default 15 [
10 [print "ten"]
20 [print "twenty"]
30 [print "thirty"]
][print "none of theni]

none of them

native! Case Red-by-example MyCode4fun

Makes a series of tests, executing the block corresponding to the first true test.

124/ 349

http://www.red-by-example.org/#either
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-either-
http://www.red-by-example.org/#switch
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-switch-switch-default-
http://www.red-by-example.org/#case
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-case-case-all---evaluates-a-block.

Helpin' Red

Red[]

case |
10 > 20 [print "not ok!"]
20 > 10 [print "this is it!"]
30 > 10 [print "also ok!"]

this is it!

fall

Executes all the true tests.
Red[]

casel/all |
10 > 20 [print "not ok!"]
20 > 10 [print "this is it!"]
30 > 10 [print "also ok!"]

this is it!
also ok!

native! CatCh & thrOW Red-by-example

Catch and throw may be used to create complex control structures. In its simplest
form, catch receives a return from one of many throws:

Red[]

a: 10

print catch |
if a< 10 [throw "too snal "]
if a=10 [throw "just right"]
if a> 10 [throw "too big"]

just right

catch/name
catches a named throw. Really deserves an example, hope to make one soon...
throw/name

throws a named catch.

125 /349

http://www.red-by-example.org/#catch

Helpin' Red

Boolean branching

native! a” Red-by-example MyCode4fun

Evaluates all expressions in a block. If one evaluation returns false, it returns none,
otherwise returns the result of the last evaluation.

all [all [
33 33
5= 5<2 false=—= none
]]
12 2=3
] ==> 12]

>> john: "boy"
— n boyll

>> alice: "girl"
= Ilgir\lll

>> all [john = "boy" alice
evaluation is returned.
== 13

"girl" 10 + 3] ;all true, the last

>> all [john = "boy" alice
false!
== none

"boy" 10 + 3] ; alice = "boy" is
>> if all [john = "boy" alice = "girl"] [print "It' all true"]

It' all true

native! any Red-by-example MyCode4fun

Evaluates each expression in a block in and returns the first resulting value that is
not false. If all resulting values are false it returns none.

126 / 349

http://www.red-by-example.org/#all
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-any-all-
http://www.red-by-example.org/#any
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-any-all-

J=5 3=5
he? hel
a ==% a 9=3
12 2=3
]] = none

>> john: "boy"
== n boyll

>> alice: "girl"
—— Ilgir\lll

>> any [john = "girl" alice = "girl" 10 + 3] ;alice = "girl" is not
false: return it!
== true

>> any [john = "girl" 10 + 3 5 > 2] 5 10 + 3 is not
false: return it!
== 13

>> if any [john = "girl" alice = "girl"] [print "Something is true

here"]
Something is true here

< Previous topic Next topic >

Helpin' Red

Free PDF documentation generator

String and text manipulation

Note: in the examples, some output lines of the console were removed for clarity.

- Sp“t Red-by-example MyCode4fun

Returns a block (a series) containing the pieces of a string that are separated by a
delimiter. Does not change original block. The delimiter is given as an argument. split is
particularly useful to the parse dialect and to analyze and manipulate text files.

>> s: "My house is a very funny house"
>> split s " "

a delimiter.

== ["My" "house" "is" "a" "very" "funny
"house"] ;result is a series with 11 elements.

;every space is

>> s: "My house ; is a very ; funny house"

>> split s ";" ;split happens
at the semi-colons.
== ["My house " " is a very " " funny house"] ;result is a

series with 3 elements.

removing characters: gefon triM Red-by-example MyCodedun

The word trim with no refinements removes white space (tabs and spaces) from the
beginning and end of a string! (it also removes none from a block! or object!). The value of
the argument is altered. It has a refinement to remove specific characters. It returns the
trimmed series and changes the original series.

Refinements:

/head - Removes only from the head.

/tail - Removes only from the tail.

/auto - Auto indents lines relative to first line.

/lines - Removes all line breaks and extra spaces.

/all - Removes all whitespace (but not line breaks).

/with - Same as /all, but removes characters in a 'with’ argument we supply. It must be one
of: char! string! or integer!

128 / 349

https://www.helpndoc.com
http://www.red-by-example.org/#split
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-split---break-a-string-into-pieces-using-delimiters.
http://www.red-by-example.org/#trim
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-trim-trim-head-trim-tail-trim-all-trim-with-

>> e: " spaces before and after
>> trim e
== "spaces before and after"

trim leading spaces:

>> e: " spaces before and after
>> trim/head e
== "spaces before and after

trim trailing spaces:

>> e: spaces before and after
>> trim/tail e

== " spaces before and after"

trim specific characters:

>> d: "our house in the middle of our street"
>> trim/with d " "
== "ourhouseinthemiddleofourstreet"”

>> a: "house"
>> trim/with a "u"
== Ilhosell

the opposite of trim: s Pad Redby-exampie

pad expands the string to a given size by adding spaces. The default is to add spaces to
the right, but with the refinement /1eft , spaces are added to the beginning of the string.
Changes the original string, beware.

>> a: "House"
>> pad a 10
== "House "

http://www.red-by-example.org/#pad

>> pad/left a 20

== House

text concatenation: [€]O1N Red-by-example MyCodestun

>> a: "house" b: c: "entrance"
rejoin [a b c]

== "house entrance"

A4
A\

or, using append - this changes the original series

>> append a ¢
== "house entrance"

>> a: "house" b: c: "entrance"

>> append a ¢
== "houseentrance"

>> append a append b c

== "houseentrance entrance" ; "a" was changed to
"houseentrance" in the last manipulation

turning a series into text: & fOrm Red-by-example MyCodestun

form returns a series as a string, removing brackets and adding spaces between
elements. form was briefly seen in the Accessing and formating data chapter.

>> a: ["my" "house"™ 23 47 4 + 8 ["a" "bee" "cee"]]
>> form a
== "my house 23 47 4 + 8 a bee cee"

/part

The refinement /part limits the number of characters of the created string.

>> a: ["my" "house" 23 47 4 + 8 ["a" "bee" "cee"]]

http://www.red-by-example.org/#rejoin
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-read-foreach-find-rejoin-halt-
http://www.red-by-example.org/#form
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-now-time-append-and-form-

>> form/part a 8
== "my house"

String Iength: action! |ength’) Red-by-example MyCode4fun

>> f: "my house"
>> length? f
==8

left part of string:
using copy/part :

>> s: "nasty thing"
>> b: copy/part s 5
== Ilnastyll

right part of string:
using at :

>> s: "nasty thing"
>> at tail s -5
== "thing"

using remove/part - this changes the original series, beware!

>> s: "nasty thing"
>> remove/part s 6
== "thing"

middle part of string:

using copy/part and at:

http://www.red-by-example.org/#lengthxqm
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-length-returns-the-number-of-values-in-the-series.

>> a: "abcdefghijkl™
>> copy/part at a 4 3
e Ilde_Fll

Insert strings:

at the beginning, using insert:

>> s: "house"
>> insert s "beautiful "

>> 'S
== "beautiful house"

at the end, using append:

>> s: "beautiful"
>> append s " day"
== "beautiful day"

in the middle, using insert at:

>> s: "nasty thing"
>> insert at s 7 "little "

>> S
== "nasty little thing"

native! Iowercase Red-by-example MyCode4fun

Changes the original string, beware.

>> a: "mY HoUse"
>> lowercase a
== "my house"

Ipart

>> a: "mY HoUse"
>> lowercase/part a 2

http://www.red-by-example.org/#lowercase
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-do-uppercase-and-lowercase-

native! u p p ercase Red-by-example MyCode4fun

Changes the original string, beware.

>> a: "mY HoUse"
>> uppercase a
== "MY HOUSE"

/part

>> a: "mY HoUse"
>> uppercase/part a 2
== "MY HoUse"

< Previous topic Next topic >

http://www.red-by-example.org/#uppercase
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-do-uppercase-and-lowercase-

Helpin' Red

Generate EPub eBooks with ease

Printing special characters

These were taken from Rebol's documentation, but | have tested most of them in Red and
they seem to work:

Control characters:

Character Definition

#A(null)" or #' @ null (zero)

#'7(line)", or #'A~/" new line

#'~(tab)" or #"N-" horizontal tab
#""(page)” new page (and page eject)
#""(esc)" escape

#"~(back)" backspace

#"~(del)" delete

#UANY caret character

#oAn" guotation mark

#'(0)" to #"(FFFF)" hex forms of characters

Special characters for within strings:

Character Function

n prints a " (quote)

"} inserts a } (closing brace)

nn inserts a " (caret)

~ starts a new line

~(line) starts a new line

- inserts a tab

~(tab) inserts a tab

~(page) starts a new page (?)

“(letter) inserts control-letter (A-2)

~(back) erases one character back

~(null) inserts a null character

~(esc) inserts an escape character

M XX) inserts an ASCII character by
hexadecimal (XX) number

134 /349

https://www.helpndoc.com/create-epub-ebooks

Helpin' Red

< Previous topic Next topic >

135/ 349

Produce online help for Qt applications

Time and timing

native! Walt Red-by-example MyCode4fun

Stops the execution for the number of seconds given as argument.

o Note: as of November 2017, the GUI Console does not work well with wait.

native! nOW Red-by-example MyCode4fun

Returns date and time:

>> now
== 12-Dec-2017/19:24:41-02:00

Refinements

/time - Returns time only. time!

>> now/time
== 21:42:41

/precise - High precision time. date!

>> now/precise
== 2-Apr-2018/21:49:04.647-03:00

>> a: now/time/precise

== 22:05:46.805 ;a is a time!
>> a/hour
== 22 shour is an integer!

>> a/minute
== 5 sminute is an integer!

>> a/second
= 46.805 ;second is a float!

This script creates a delay of 300 miliseconds (0.3 seconds):

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://www.red-by-example.org/#wait
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-no-wait-a-refinement-of-view.-and-wait-
http://www.red-by-example.org/#now
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-now-time-append-and-form-

Red []

thi smonent: now/ ti e/ preci se

print thisnonent

while [now tine/precise < (thisnmonment + 00:00:00.300)][]
print now tine/precise

21:51:58.173
21:51:58.473

lyear - Returns year only. integer!

>> now/year
== 2018

/month - Returns month only. integer!

>> now/month

/day - Returns day of the month only. integer!

>> now/day

/zone - Returns time zone offset from UCT (GMT) only. time!

>> now/zone
== -3:00:00

/date - Returns date only. date!

>> now/date
2-Apr-2018

Iweekday - Returns day of the week as integer! (Monday is day 1).

>> now/weekday
==1

lyearday - Returns day of the year (Julian). integer!

>> now/yearday
== 92

/utc - Universal time (no zone). date!

>> now/utc
== 3-Apr-2018/0:53:50

- rate Red-by-example MyCode4fun

Timing may also be achieved with VID dialect (GUI) using the rate facet.

< Previous topic Next topic >

http://www.red-by-example.org/#0rate
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-rate-sets-a-timer-for-a-face.-

Helpin' Red

Free HTML Help documentation generator

Error handling

- attempt Red-by-example MyCode4fun

Evaluates a block and returns the result or none if an error occur.

>> attempt [a: 10 b: 9] ;first lets try with no errors...
==9

>> a

== 10 ;... no problems here!

>> attempt [a: 10 nosyntax] ;nosyntax has no value: ERROR!
== none

>> attempt [divide 100 0]
== none

native! try Red-by-example MyCode4fun

Tries to evaluate a block. Returns the value of the block, but if an error! occurs, the block
is abandoned, and an

error value is returned.

To identify a block that generates an error without actually having the error output printed,
we use the function error?.

You may ask why not use attempt instead of error? & try. Ithink the answer is that
the error? & try combination returns true and false, instead of none or an evaluation.
This is useful when used inside other structures.

>> error? [nosyntax]
== false ;nosyntax has no value and it generates an
error,

;but only if evaluated. In itself, is not a
error! datatype.

>> try [nosyntax]
*** Script Error: nosyntax has no value

139 /349

https://www.helpndoc.com
http://www.red-by-example.org/#attempt
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-style-group-box-reduce-origin-attempt-
http://www.red-by-example.org/#try
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-if-error-and-try-we-force-an-error-by-dividing-by-zero.

*** Where: try
*¥** Stack: 5 just "try" does not work, you get an
error!!

>> error? try [nosyntax]
== true ; OK!

>> error? try [divide 100 0]
== true

native! CatCh and haivel thrOW Red-by-example

These are used to handle errors, but | could not figure how. Does not seem to be a
beginner's issue.

< Previous topic Next topic >

http://www.red-by-example.org/index.html#catch

Easily create PDF Help documents

Files

Path, directories and files

Path names

File paths are written with a percent sign (%) followed by a sequence of directory names
that are each separated by a forward slash (/). In Windows, Red makes all the conversions
from backslashes to forward slashes, you don't have to worry.

Just remembering:

/ is the root of the current drive;

./ is the current directory;

../ is the parent of the current directory;,

file paths that do not begin with a forward slash (/) are relative paths;

to refer to Window's often used "C" drive you should use: %/C/docs/file.txt
absolute paths should be avoided to ensure machine-independent scripts;

A graphic file selector:

- I’eq u est-ﬂ | e Red-by-example MyCode4fun

request-file opens a graphic file selector and returns the full file path as a file!

>> request-file

https://www.helpndoc.com/feature-tour
http://www.red-by-example.org/#request-file
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-request-file-request-dir-request-font-pop-up-system-dialog-boxes.

4 o Medlll o Brograme o Rebgd et w B s et a
Drguniaz = s furbder - M @
EILS . Les mod e
il Tnaliive input Lo JETEET 1542
A rayfists 24T 7 Hed
illm BE PyFiralred 3 AT 185
B Duikin
| Deeurmani
- Dzswricad
B Sz
| =ITILRR
B iz
e Looal Dink [
s WERADE AR PRG0S
A
1w rarne v Al -

== %/C/Users/André/Documents/RED/myFirstFile.txt

Refinements

ftitle - window title. Example: request-file/title "My file is:"

[file - Default file name or directory. Example: request-file/file %"MyFile.txt"

ffilter -Supply a block of filters consisting of pairs of filter names, and the actual filters.
Example: request-file/filter ["executables" "*.exe" "text files" "*.txt"]
/save - File save mode. Example with filters: request-file/save/filter ["executables"
"* . exe" "text files" "*.txt"]

/multi - Allows multiple file selection, returned as a block.

A graphic directory selector:

- I’eq U eSt'd | r Red-by-example MyCode4fun

request-dir opens a graphic directory selector and returns the full file path as a file!

[R Fa

== %/C/Users/André/Documents/RED/

Refinements

http://www.red-by-example.org/#request-dir
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-request-file-request-dir-request-font-pop-up-system-dialog-boxes.

ftitle => Window title.

[dir => Set starting directory.

ffilter =>TBD: Block of filters (filter-name filter).

/keep => Keep previous directory path.

/multi =>TBD: Allows multiple file selection, returned as a block.

Deleting a file:

action! d el ete Red-by-example MyCode4fun

Deletes a file and returns true if successful, false otherwise.

>> delete %file.txt
== true

Getting the size of afile:
native! Sl Ze’> Red-by-example

Returns the number of bytes a file has, or none if file does not exist.

>> size? Z%myFirstFile.txt
== 37

Other directory and path functions:

cd or change-dir - Changes the current directory.

dir, Is or list-dir - Lists the contents of a given directory. If no argument is given, lists the
current directory.

dir? - Returns true if the supplied name is a valid file path!,
otherwise returns false.

dirize - Turns its argument into a valid directory.
The argument can be of file! string! url!.
Effectively dirize only appends a trailing / if needed.

exists? - Returns true if its argument is an existing path!
or false otherwise.

file? - Returns true if its argument is a file!.

get-current-dir - Returns the current directory the program is using.

http://www.red-by-example.org/#delete
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-save-load-write-read-delete-
http://www.red-by-example.org/#sizexqm

get-path? - Returns true if its argument is a get-path!
path? - Returns true if its argument is a path!

split-path - Splits a file! orurl! path. Returns a block containing path and
target.

suffix? - Returns the sufix of a file. e.g: exe, txt
what-dir - Returns the current directory path as a file! value.

to-red-file - Converts a local file system path to Red's
standard machine independent path format.

to-local-file - Converts standard, system independent Red
file paths to the file format used by the local operating system.

clean-path - Cleans-up '." and '.." in a path
and returns the cleaned path.

red-complete-file
red-complete-path

set-current-dir

< Previous topic Next topic >

Helpin' Red

News and information about help authoring tools and
software

Writing to files

Writing to a text file:

- erte Red-by-example MyCode4fun

Writes to a file, creating it if it doesn't exist.

>> write %myFirstFile.txt "Once upon a time..."

Appending a text file:

lappend

If you just write againto the file created above, it will be overwritten. If you want to add
more text to it (append it):

>> write/append %myFirstFile.txt "there was a house.™

Your file now has "Once upon a time...there was a house" in it.

Writing a series to a file making each element a line:

/lines

>> write/lines %mySecondFile.txt ["First line;" "Second line;"
"Third line."]

Appending full lines:

>> write/append/lines %mySecondFile.txt ["Fourth line;" "Fifth
line;" "Sixth line."]

Your file now looks like this:

145/ 349

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com
http://www.red-by-example.org/#write
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-save-load-write-read-delete-

Helpin' Red

First line;
Second line;
Third line.
Fourth line;
Fifth line;
Sixth line.

Notice that you could have written write/lines/append. The order of the refinements
makes no difference.

Replacing characters in afile:

To replace characters in a text file, starting at n+1 position, use write/seek %<file> <n>:

>> write/seek %myFirstFile.txt "NEW TEXT" 5

Now the first file has: "Once NEW TEXTime...there was a house."
Write refinements:

/binary => Preserves contents exactly.

fines =>Write each value in a block as a separate line.

/info =>

lappend => Write data at end of file.

Ipart => Partial write a given number of units.

Iseek => Write at a specific position.

lallow => Specifies protection attributes.

las => Write with the specified encoding, default is 'UTF-8.

-Save Red-by-example MyCode4fun

Saves a value, block, or other data to a file, URL, binary, or string.

Difference between write and save:

>> write %myFourthFile.txt [11 22 "three" "four" "five"]

Your file now has: [11 22 "three" "four" "five"]

146 / 349

http://www.red-by-example.org/#save
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-save-load-write-read-delete-

Helpin' Red

>> save %myFourthFile.txt [11 22 "three" "four" "five"]

Your file now has 11 22 "three" "four" "five"

An important use of save is to simplify the saving of Red scripts that can be interpreted
using the action do :

>> save %myProgram.r [Red[] print "hello"]
>> do %myProgram.r
hello

do, load and save are better understood if you think of Red's console as the screen of
some old computer from the 80's running some variation of basic language. You
can load your program, save it, or do (execute) it.

< Previous topic Next topic >

147 /349

https://ungaretti.gitbooks.io/red-language-notebook/content/files-and-i-o.html
https://ungaretti.gitbooks.io/red-language-notebook/content/files-and-i-o.html

Helpin' Red

Generate Kindle eBooks with ease

Reading files

Reading files as text:

- rea.d Red-by-example MyCode4fun

>> a: read %mySecondFile.txt
== {First line;”~/Second line;~/Third line.”/Fourth line;~/Fifth 1i

Now the word (variable) "a" has the entire content of the file:

>> print a
First line;
Second line;
Third line.
Fourth line;
Fifth line;
Sixth line.

Reading files as series where every line is an element:
Notice that, so far, the word "a" above is just text with newlines. If you want to read the file
as a series! having each line as an element, you should use read/lines:

>> a: read/lines %mySecondFile.txt
["First line;" "Second line;" "Third line." "Fourth line;"...

>> print pick a 2
Second line;

Read refinements:

/part => Partial read a given number of units (source relative).
Iseek => Read from a specific position (source relative).
/binary => Preserves contents exactly.

llines => Convert to block of strings.

/info =>

las => Read with the specified encoding, default is 'UTF-8.

148 / 349

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
http://www.red-by-example.org/#read
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-save-load-write-read-delete-

Helpin' Red

- |Oad Red-by-example MyCode4fun
Reading files as a series where every word (separated by space) is an element:

In this case, you should use load instead of read:

>> a: load %mySecondFile.txt
== [First line Second line Third line.
Fourth line Fifth...

>> print pick a 2
line

Reading and writing binary files:

To read or write a binary file such as an image or a sound, you should use
the /binary refinement. The following code loads a bitmap image to variable a and saves

that image with another name:

>> a: read/binary %heart.bmp
424D660700000000000036000000280000001E0V000014000000010. . .

>> write/binary %newheart.bmp a

Load refinements:
/header =>TBD.

/all => Load all values, returns a block. TBD: Don't evaluate Red header.
ftrap => Load all values, returns [[values] position error].
/next => Load the next value only, updates source series word.
Ipart =>
/into => Put results in out block, instead of creating a new block.
las => Specify the type of data; use NONE to load as code.
< Previous topic Next topic >

149 / 349

http://www.red-by-example.org/#load
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-save-load-write-read-delete-

Helpin' Red

Write eBooks for the Kindle

Functions

Functions must be declared before they are used and so must be written on top of your
program. However, this is not required if a function is called from within another function.

native! fu nC Red-by-example MyCode4fun

Variables inside a function created with func are global. They are the seen by the entire
program.

A function is created with func as follows:

<function name>: func [<argumentl> <argument2> ... <argument n>] [<actions
performed on arguments>]

Red []
mysum func [a b] [a + b]
print nysum3 4

7

Demonstrating that variables are global:

Red []

mysum func [a b] [
mynunber: a + b
print mynunber

]
mynunber: 20

mysum 3 4
print mynunber

7
7

native! fu n Ctl O n Red-by-example MyCode4fun

function makes its variables local, i.e. it hides (shades) the variables inside it from the
rest of the program.

Same program as above, only using function instead of func:

150/ 349

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
http://www.red-by-example.org/#func
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-function-func-exit-
http://www.red-by-example.org/#function
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-function-func-exit-

Helpin' Red

Red []

mysum function [a b] |
mynunber: a + b
print mynunber

]
mynunber: 20

nmysum 3 4
print mynunber

Different results:

7
20

Forcing variables to be global with /extern refinement:

Red []

myfunc: function [/extern a b] [
a: 22
b: 33

]

a: 7

b: 9

myf unc

print a

print b

22
33

Defining the argument type:

You can force your arguments to be of a certain datatype:
Red []

mysum function [a [integer!] b[integer!]] [print a + b]
print mysum 3.2 4

*** Script Error: mysum does not allow float! for its a argument
*** Where: mysum
*¥** Stack: mysum

You may allow multiple datatypes:
Red []

mysum function [a [integer! float!] b[integer!]] [print a + b]
print mysum 3.2 4

7.2

Or use an upper class of datatypes:

Red []
mysum function [a [nunber!] b[nunber!]] [print a + b]

151 /349

Helpin' Red

print mysum3.2 4

7.2

Documenting your functions

A description of your function may be included by placing a string inside the argument
block before the arguments. Also, you may also add explanations about your arguments as
a string after the restriction block. These descriptions and explanations will show when you
ask for help on your own function.

Red []
sum func [

"Adds two integers, floats or pairs"

a [integer! float! pair!] "Fisrt nunber"”

b [integer!] "Next Nunmber - nust be integer”
11

a+b

]

print "This is ny function's help:"
print ? sum

This is my function's help:
USAGE:
SUM a b

DESCRIPTION:
Adds two integers, floats or pairs.
SUM is a function! value.

ARGUMENTS:
a [integer! float! pair!] "Fisrt number."
b [integer!] "Next Number - must be integer."

>> sum 5 8,4

*** Script Error: sum does not allow float! for its b argument
*** Where: sum

**% Stack: sum

>> sum 2x3 4
== 6X7
Returning values from functions: faie F€{UrN Rred-by-example MyCodestun

The return value of a function is either the last value evaluated by the function or one
explicitly determined by the word return:

Last evaluation example:

Red []

152 / 349

http://www.red-by-example.org/#return
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-return-

Helpin' Red

myfunc: function [] |
8 +9
3 +3
print "got here"
10 + 5

]
print myfunc

got here
15

return example:

Red []
nmyfunc: function [] [
8 +9
return 3 + 3
print "never got here"
10 + 5

]
print myfunc

6

Creating your own refinements:

You can create refinements to you functions, like the native refinements of Red:
<myfunction>/<myrefinement>. The refinements are boolean values that are checked by the
function:

Red []

myfunc: function [a /up b /down c] [
if up [print a + b]
if down [print a - c]

]

myfunc/up 10 3

myf unc/ down 10 3

13
7

Note that arguments are not mandatory for refinements.

A more complete example:

Red []

sum func [
"Adds two integers, floats or pairs”
a [integer! float! pair!] "Fisrt nunber"”
b [integer!] "Next Nunmber - nust be integer”
[average "Average instead of add"

either average [a + b/ 2] [a + D]

153 /349

print "This is ny function help:"

print ? sum

print

print "Using add with 10 and 16:"

prin "sum=" print sum10 16

prin "sunfaverage = " print sum average 10 16

This is my function help:
USAGE :
SUM a b

DESCRIPTION:
Adds two integers, floats or pairs.
SUM is a function! value.

ARGUMENTS:

a [integer! float! pair!] "Fisrt number."

b [integer!] "Next Number - must be integer."
REFINEMENTS:

/average => Average instead of add.

Using add with 10 and 16:

sum = 26
sum/average = 13

Assigning functions to words (variables)

To assign a function to a variable (a word) you must precede the function with a colon:
<word>: :<function>

>> mysum: func [a b] [a + b]
== func [a b][a + b]

>> a: :mysum
func [a b][a + b]

> a 39
== 12

native! does Red-by-example MyCode4fun

If your function just do something with no arguments and no local variables, create it
with the word does :

Red []
greeting: does |
print "Hello"

http://www.red-by-example.org/#does
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-does-defines-a-function-with-no-arguments-or-local-variables.

print

]

greeting

Hello
Stranger

"Stranger™

Helpin' Red

native! haS Red-by-example MyCode4fun

If your routine uses no external arguments but has local variables, use the

word has. has turns the argument into a local variable. Compare the three programs below.
The first uses has with no argument, hence "number"is a global variable. The second

gives "number" as argument, making it local. And the third shows that a function with
argument need that argument to be sent by the calling event.

1 Eed 1
- dhrﬁ becomes local
1 Eed []
. = o 3 myhas: has [number]
o i i - number: 10 + 33
i SEEETS S et 5 print number
4 number : 10 + 33 _
o
=< int numbs)
] print n er - o
E 5 8 print number
7 myhas r
f BEint zumbec | Y Red Consale — O =
i AR, - O et 1 File Options
14
N - . 43
File Options 11 .
e e F 1 *®=% Script Error: number ha
1:43 3 s no value
., l;*** khere: print
1! l,*** Stack:
1 >3
L 11 |

155 /349

http://www.red-by-example.org/#has
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-has-defines-a-function-with-local-variables-only.

Helpin' Red

Red

myhas: function [number]
number: 10 + 33
print number

[o TR S L T O T B

=]

myhas
print number

A

11 E Red Console — O >

~| File Options

|1*** Script Error: number ha
15 no wvalue

|**% yhere: print

~|*=* Stack: myhas

>3 |

native! eX|t Red-by-example MyCode4fun

Exits a function without returning any values.

< Previous topic Next topic >

156 / 349

http://www.red-by-example.org/#exit
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-function-func-exit-

Free EBook and documentation generator

Objects

An object is a container that groups data and/or functions, usually (always?) assigned to a
word (variable) . To access an object's attribute in Red, we use a slash (/) as a separator.
This is unusual as most languages use a dot, but once you get used to it, it seems more
intuitive as itis similar to a path.

Creating an object:

mion Make object! , mmwn context and @ ODjECt Red-by-exanple

You may use make object!, object or context to create an object. They are the same
command. object and context are just shortcuts to make object!.

Red []

myobj ect: object |
x: 10
y: 20

f: function [a b] [a + Db]
name: none
tel: none

]

myobj ect/nanme: "Dimtri”
myobj ect/tel: #3333-3333
print myobject/x

print myobject/y

print myobject/f 3 5
print myobject/ nane
print myobject/te

10

20

8

Dimitri
3333-3333

Evaluation is done only when creating an object! (constructor code). Notice that
the print command in the code below is not executed when the object is accessed:

>> myobject: object [print "hello"™ a: 1 b: 2]
hello
== make object! [

a: 1

https://www.helpndoc.com
http://www.red-by-example.org/#cat-o01

]

>> myobject/a

Self reference:

When an object must do a reference to itself, we use a special keyword named self :

Red []

myobj ect: object |
x: 10
y: 20

f: function [a b] [a + D]
aut oanal i sys: does [print self]

]

myobj ect / aut oanal i sys

x: 10

y: 20

f: func [a b][a + b]
autoanalisys: func [][print self]

Cloning an object:

Simply assigning an object to another creates a "link" to the same data. If the original
changes, the second also changes:

>> a: object [x: 10] ;lines of the console deleted for the
sake of clarity.

>> b: a ;1lines of the console deleted for the
sake of clarity.

>> a/x: 20

== 20

>> b/x
== 20 ;changed too!

To make a true copy of an object, we use the word copy:

>> a: object [x: 10] ;lines of the console deleted for the
sake of clarity.
>> b: copy a ;1lines of the console deleted for the

sake of clarity
>> a/x: 20

== 20

>> b/x
== 10 ;NO change! b is a true copy.

Prototyping (Inheritance)

Any object can serve as a prototype for making new objects. If we want to create a new
object that inherits the first object , we use: make <original object> <new specifications>:

Red []

a: object [x: 3]
b: make a [y: 12]
print b

X: 3
y: 12

Another example:

Red []

myobj ect: object |
name: none
tel: none

]
myobj ect/nanme: "Dimtri”
myobj ect/tel: #3333-3333

myext ended- obj ect: make mnyobject |
gender: "nel e"
zi p_code: 666

]

myext ended- obj ect/ nane: "Il gor"
nmyext ended- obj ect/tel: #9996-9669

prin myobject/name prin " tel:" print myobject/te

prin nyextended-object/nanme prin " tel:" prin nyextended-object/te
prin " gender:" prin nyextended-object/gender prin " zip:"

print mnyext ended- object/zi p_code

Dimitri tel:3333-3333
Igor tel:9996-9669 gender:male zip:666

find and select - for objects

find simply checks if the field exists, returning true or none .

select does the same checking, but if the field exists, returns its value.

Red []

obj: object [a: 44]

print find obj 'a

print select obj 'a

print find obj 'x

print select obj 'sonething

true
44

none
none

Notice that both look for the word (indicated by the ' symbol preceding it), not the variable
itself. The variable would be accessed by a simple path like obj/a.

Note on extending objects:

Documentation says the built-in function extend should be able to add new items not only to
map!, but also to object! However, this seems not to have been implemented yet.

< Previous topic Next topic >

Helpin' Red

Easily create Web Help sites

Reactive programming

Reactive programming in Red's documentation

Reactive programming creates an internal mechanism that automatically updates things
when a special kind of object is changed. No need to call functions or subroutines do do
that. You change object A, and B is automatically changed too.

Reactor: is the object that, when changed, triggers the changes. Created by make
reactor! .

Reactive expression: changes when the reactor changes. Created by is .

- m ake reaCtO rl and op! |S Red's documentation on reactor! Red's documentation on is

Very basic example of using reactive programming:

Red[]
a: make reactor! [x: ""]
b: is [alX]
forever [
a/ x: ask "?"

print b

?house
house
?fly
fly
?bee
bee

A reactor can update itself:

Red[]
a: nake reactor! [x: 1 vy: 2 total: is [x + y]]
forever |

alx: to integer! ask "?"
print a/total

161 /349

https://www.helpndoc.com/feature-tour
https://doc.red-lang.org/en/reactivity.html
https://doc.red-lang.org/en/reactivity.html#_reactor
https://doc.red-lang.org/en/reactivity.html#_is

Helpin' Red

?33
35
?45
47

Be careful not create an endless loop. That happens if a change triggers a change initself.

d ee p = r eaCtO r I Red's documentation

Just like copy has the refinement /deep to reach nested values (blocks within the main
block), so does reactor!.

This program is supposed to repeat what you type on the console, but it does not work:

Red[]

a: make reactor! [z: [x: ""]]
b: object [w is [alz/x]]
b/w. "no change"

forever [
alz/ x: ask "?"
print b/w

?house
no change
?blue
no change

However, if you change to deep-reactor!:

Red[]

a: make deep-reactor! [z: [x: ""]]
b: object [w is [a/z/x]]
b/w. "no change"

forever |
al z/ x: ask "?"
print b/w

?house
house
?blue
blue

162 / 349

https://doc.red-lang.org/en/reactivity.html#_deep_reactor

Helpin' Red

- I’eaCt Red's documentation

This is the built-in function used for creating reactive GUIs. Please look at GUV/Advanced
topics.

Copied-and-pasted from the documentation:

mmemn Clear-reactions
Removes all defined reactions, unconditionally.
mmeen [eact?

Checks if an object's field is a reactive source . [f it is, the first reaction found where that
object’s field is present as a source, will be returned, otherwise none is

returned. /target refinement checks if the field is a target instead of a source, and will
return the first reaction found targeting that field or none if none matches.

ftarget =>Checkif it's a target instead of a source.
mmmn dUMp-reactions

Outputs a list of registered reactions for debug purposes.

< Previous topic Next topic >

163 /349

https://doc.red-lang.org/en/reactivity.html#_react
https://doc.red-lang.org/en/reactivity.html

Helpin' Red

News and information about help authoring tools and
software

OS interface

native! Cal | Red Wiki Red-by-example My Code4fun

Executes a shell command. In most cases, is the same as writing to the command prompt
(CLYI), but there are a few quirks.

The following code opens Windows Explorer:

>> call "explorer.exe"
== 11272 ; this is the number of the process opened.

This also works:

>> str: "explorer.exe"
== "explorer.exe"

> call str
== 11916

However, the following code creates the process, but does not open Notepad on screen:

>> call "notepad.exe"
== 4180

If you want a behavior more similar to typing a command on the shell, you must use the
refinement /shell:

>> call/shell "notepad.exe" ;opens notepad on screen
== 6524

Generate a beep (tone, duration). Must have Powershell installed.

>> call "powershell [console]: :beep(1000,500)"
== 1088

Other refinements:

164 / 349

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com
https://github.com/red/red/wiki/[DOC]-Reference-Call
http://www.red-by-example.org/#call
http://www.mycode4fun.co.uk/red-beginners-reference-guide#TOC-Here-we-use:-call-executes-a-shell-command-or-executable-file.

Helpin' Red

/wait

Runs command and waits until the command you executed is finished to continue. Be
careful: If you use /wait on a command that you can't finish (like call "notepad.exe"
above), Red will wait... and wait.. indefinetly.

/input - we provide a string! a file! or a binary!, which will be redirected to stdin.

I don't understand this one. Seems as the same as simply call , as we provide string or a
file anyway.

/output

We provide a a string! a file! or a binary! which will receive the redirected stdout from the
command. Note that the output is appended.

The following code will create a text file with the shell output for "dir" (a list of files and
folders from current path):

>> call/output "dir" %mycall.txt

This will create a (long) string with the results from "dir":

>> call/output "dir" a
==e

>> a
== { Volume in drive C has no label.”/ Volume Serial Number is BC5

Ishow
Force the display of system's shell window (Windows only). Your script will run with
windows command prompt open.

>> call/shell/show "notepad.exe"
== 12372

| believe this will have some use in the future, when Red allows using the /console option
from the GUI console. Maybe.

/console

Runs command with /O redirected to console (CLI console only at present, does not work
with Red's normal GUI console).

Open Red on system console, as explained here, then, using the /console refinement on

165 /349

Helpin' Red

call, you the cmd output on the same console as Red:

C:\Users\André\Documents\RedIDE>
--== Red 0.6.3 ==--
Type HELP for starting information.

>>

mive Write-clipboard & read-clipboard

Writes to and reads from the OS clipboard:

>> write-clipboard "You could paste this somewhere you find useful"
== true

>> print read-clipboard
You could paste this somewhere you find useful

< Previous topic Next topic >

166 / 349

Helpin' Red

Easy EPub and documentation editor

/0O

As of october 2018, Red only has as simple /O. That includes access to files and HTTP
(HTTPS?).

< Previous topic Next topic >

167 / 349

https://www.helpndoc.com

Full-featured Kindle eBooks generator

/O - HTTP

I have created a few files on helpin.red server to make tests with HTTP l/O:

http://helpin.red/samples/samplescriptl.txt - a simple loop without Red's header (repeat
i 3 [prin "hello " print i]).

http:/helpin.red/samples/samplescript?.ixt - a simple loop with Red's header. (Red[]
repeat i 3 [prin "hello " print i])

http://helpin.red/samples/samplehtmll1.html - a sample html page

>> print read http://helpin.red/samples/samplescriptl.txt
repeat i 3 [prin "hello " print i]

>> print read http://helpin.red/samples/samplescript2.txt
Red[] repeat i 3 [prin "hello " print i]

From a red script or using the console, you may execute code from a remote server:

>> do read http://helpin.red/samples/samplescriptl.txt swithout
header

hello 1

hello 2

hello 3

If the code in the remote server has the Red header, you may execute it directly, without the
read statement:

>> do http://helpin.red/samples/samplescript2.txt swith Red [] header
hello 1
hello 2
hello 3

You may load data or code, including functions and objects:

>> a: load http://helpin.red/samples/samplescriptl.txt
== [repeat i 3 [prin "hello " print i]]

>> do a

hello 1

hello 2

hello 3

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
http://helpin.red/samples/samplescript1.txt
http://helpin.red/samples/samplescript2.txt
http://helpin.red/samples/samplehtml1.html

HTML files may also be accessed for processing. Take a look at the example using the
parse dialect.

>> print read http://helpin.red/samples/samplehtmll.html
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">
<html>
<head>
<meta content="text/html; charset=IS0-8859-1"
http-equiv="content-type">
<title>testHtmlPage</title>
</head>
<body>

</html>

Rebolek’s red-tools has some HTTP tools that you may find interesting.
To be continued...

< Previous topic Next topic >

https://github.com/rebolek/red-tools

Helpin' Red

Full-featured Documentation generator

GUI - Overview

Very good information also in red-by-example. and in the Red documentation.

The following chapters will describe each of Red's View Graphic Engine & VID dialect
elements (faces, facets, container settings, layout commands and view refinements)
in detail, but | find that an overview of how Red creates GUIs makes it a lot simpler to
understand how these elements relate to each other.

Notice that you may create GUIs using Red's positioning commands, like at, for each of its
graphical elements (faces), but it also has a very clever GUI-creating method based on
simple sequences and a few specific commands. This method is considered the defaultin
this chapters.

Simple start:

Red creates GUIs by describing them in a view block. This description is very
straightforward and in its simplest form would be:

view [

| widget [face) |

| widget [face) |

| widget [face) |

If you are going to compile your script, you must add "needs: view" in the Red header. If you
run your scripts from the GUI console, the View module is already present.

An example code of that:
Red [needs: view
vi e
base

but t on
field

]
And the resulting GUI:

170/ 349

https://www.helpndoc.com
http://www.red-by-example.org/vid.html
http://www.red-by-example.org/vid.html
https://doc.red-lang.org/en/view.html

Helpin' Red

A Red: untitled — *®

Red documentation calls things like buttons and fields "faces" (called "widgets" in some
other languages). These faces are set on a layout inside a container (window)

Y Red: untitled — X the container

e

(window)

- the layout

the faces

There are built-in functions (layout commands) that define how faces are displayed on
this layout. These commands should be written before the faces they alter:

view [

| Layout command |

| Layout command |

| widget [face) |

widget [face)

| |
| widget [face) |

In the following example, below (a layout command) tells Red to arrange the faces below
each other, instead of the default across of the first example:

Red [needs: view

vi ewf
bel ow
base
button
field

]
The resulting GUI:

1717349

Helpin' Red

[]

There is also the container settings, which describe how the window itself should look
like. And both the container settings and the layout commands may allow further
detailing, like its size, color etc. Facesnot only allow this detailing (called facets in Red's
jargon) but also may allow a block of commands to be performed by the face (called
"action facet") in an event, e.g. the click of a button.

Note:

view
[Red'scoordinate system

| Container settings | Container settings details

| Layout command | Layout command details 33x22

| face | Face details (facets) [face action] (XxY) X
| face | Face details (facets) [face action]

| face | Face details (facets) [face action] Y

Exemple code:

Red [needs: view

vi ewf
backdrop bl ue
bel ow
base 20x20
button 50x20 "press nme" [quit]

field red "field"
]

And the resulting GUI:

Press me

172 /349

Helpin' Red

Red understands what to do with each facet simply by its datatype!. So if it sees

a pair! it knows it's the size of the face, if it sees a string! it knows it's the text to be
displayed. An odd consequence of that is that...

button 50x20 "press me" [quit]
button "press me" [quit] 50x20
button [quit] 50x20 "press me"

... are all the same, i.e. they result in the same GUI.

The view built-in function (command) allows refinements that will change the window itself
(not the layout inside it). The refinements are described in blocks coded after the main view

block, and should be coded in the same order that they were declared in the view
command:

view { refinementlf refinement2... [

| Container settings | Container settings details

| Layout command | Layout command details

| face | Face details (facets) [face action]
| face | Face details (facets) [face action]
| face | Face details (facets) [face action]

] [refinementl details] [refinement? details]

In the following code, flags tells Red that the window is of the modal type and it's resizable,

while the option's refinement block makes the window show on the top left of the screen (50
pixels down, 50 pixels left):

Red [needs: view|

vi ew fl ags/ options|
si ze 300x100
bel ow
base 20x20

button 50x20 "press ne" [quit]
field red "field"

]['"nodal 'resize] [offset: 50x50]

The resulting GUI:

Y Red: untitled — O >

press me

173 /349

Helpin' Red

< Previous topic Next topic >

174 /1 349

Helpin' Red

Free EPub and documentation generator

GUI - Container settings

These define the characteristics of the window that will contain your GUI elements.

EEE Size

Sets the size of the window in pixels.

. - e
1 Eed [needs: 'view] Eﬂed:untitled R %

L

%view [
gize 250x100]

=1 i e

If you don't set a size, Red does it automatically.

As an interesting note, unless the window is big enough to show part of the title, you can't
move (drag) it.

e title

Sets the title at top of the window.

1 Eed [r d=z: 'wview]
ed [neesds view] E Wi mine _ %

view [
title "Ummagumma™

size 250x100]

I3

0 =] & N b L

mmE backdrop

Sets the background color of the window

17517349

https://www.helpndoc.com

Helpin' Red

1 Eed [needs: 'wview] E
: : X
3 view [
3 backdrop red]
5
)
actors

e See the specific chapter.

Setting an icon

This only works if you compile the code! Does NOT work on interpreted code.

Not a container setting, but I think it fits here. If you want to set an icon to your window that is
not the Red default, add icon: <path-to-icon> after the needs: 'view inthe Red initial

block:

b

%Red [needs: "wview _@ w

P icon: fprojectl.ico]

view []

=1 & N b Ll

Refinements

Containers (windows) allow the refinements options, flags, no-wait and tight. The
refinements options and flags are defined in blocks after the view main block.

/options

In the options refinement you can determine your window's offset and size (size seems to
be definable in both ways, as a container setting or an option).

e Offset determines where your window will show, measured from the top left of your
screen.

176 /1349

Helpin' Red

/Iflags

e modal - modal window. Demands attention, disables all other windows until you close
it.

Note: if you create a window that is modal and no-title/no-border, it is pretty hard to get rid
of it, I had to use Task Manager.

e resize -the window can be resized.

REed [needs: 'wiew]
View/flags [size 200x30 text "Modal and resize"] [modal resize]

M Red:.. — O et

Modal and resize

e no-title - results in a rectangular frame with no title or buttons.

Red [needs: "wview]
View/flags [text "No title™] [no-title]

Mo title

e no-border - results in a rectangular frame with no title or buttons and no border.

Red [needs: 'wview])
View/flags [text "Ho border™] [no-border]

Mo border

e no-min - only the close button is shown on window's top.

177 1349

Red [needs: 'wview]

View/flags [size 200x30 text "No min"™] [no-min]
Y Red: untitled X
Mo min

® no-max - the maximize button is shown as inactive.

Red [needs: 'view]

View/flags [size Z200x30 text "Ho max"] [no-max]
B Red:.. — 4
Mo max

®* no-buttons - no window's buttons (maximize, minimize, close) are shown.

FEed [needs: 'view]

View/flags [size Z200x30 text "Ho buttons"™] [no-buttons]
Red: untitled
Mo buttons

e popup - Windows only - makes the window a popup. It has a special styling (close
button only) and allows other windows to stay active. Closes if you change focus to
other windows.

/no-wait

From the documentation: "View: Render on screen a window from a face tree or a block of
VID code. Enters an event loop unless /no-wait refinement is used.

That s, if you don't use no-wait, View will create a face and stay there waiting for events. If
you use no-wait, Red will execute the View block (show the GUI) and keep going forward in
the script.

Red [needs: view|
view no-wait [button "Quit" [quit]]

print

Jtight

Zero offset and origin.

Default (without /tight):

https://doc.red-lang.org/en/view.html#_extra_functions

Red [needs: view
vi ew| base]

[>= 1 e

With /tight:

Red [needs: view
vi ew ti ght[base]

[>= 1 *

< Previous topic

Helpin' Red

179 /349

Next topic >

Helpin' Red

Free Qt Help documentation generator

GUI - Layout commands

WBBE ACross

Red [needs: view

view [

]

across
area 20x20 red

area 20x20 bl ue
area 20x20 green

pot

mes below

Red [needs: view|

view [

bel ow

area 20x20 red
area 20x20 bl ue
area 20x20 green

WEEE return

return while in across mode:

180 /349

https://www.helpndoc.com

1

234-|

lys

67

Red [needs: view

view [

]

acr oss
area 20x20 red
area 20x20 bl ue
return

area 20x20 green
area 20x20 gray
area 20x20 yel | ow

*

[]

return while in below mode:

-3
4

5

rUJMI—‘

Red [needs: view

view [

bel ow

area 20x20 red
area 20x20 bl ue
return

area 20x20 green
area 20x20 gray
area 20x20 yel | ow

mm C
ml i

Helpin' Red

181 /349

Helpin' Red

mmE Space

Sets the new spacing offset which will be used for placement of following faces.

Red [needs: view|

view [
across
space 50x10
area 20x20 red
area 20x20 bl ue
return
area 20x20 green
area 20x20 gray
area 20x20 yel | ow

- 10

i

50

mBEE Origin
Sets the offset of the first face from the upper left corner of the window's panel.

Red [needs: view|

view [
across
origin 70x20
area 20x20 red
area 20x20 bl ue
return
area 20x20 green
area 20x20 gray
area 20x20 yel | ow

182 /349

Helpin' Red

E Red: unti... - pod

20

e At

Places the next face at an absolute position. This positioning mode only affects the next
following face, and does not change the layout flow position. So, the following faces, after
the next one, will be placed again in the continuity of the previous ones in the layout flow.

Red [needs: view

view [
across
area 20x20 red
area 20x20 bl ue
return
area 20x20 green
at 2x5
area 20x20 gray
area 20x20 yel | ow

A

[
]

mem P ad

Modifies the layout current position by a relative offset. All the following faces on the same
row (or column) are affected.

Red [needs: view

view [
across
area 20x20 red
area 20x20 bl ue
return
area 20x20 green
pad 10x10

183 /349

Helpin' Red

area 20x20 gray
area 20x20 yel | ow

]

A
EEN
B g

native! d O

This is the same do from the Running code chapter. In this case, it is used to run regular
code inside your view.

You can do this:

Red [needs: 'view]
a: 33 + 12
print a ;prints on console
view [
text "hello"
]

But this will give you an error:

Red [needs: 'view]

view [
text "hello"
a: 33 + 12 ;ERROR!!'!
print a

Inside the view, you must code:

Red [needs: 'view]

view [
text "hello"
do [a: 33 + 12 print a] ;0K
]
< Previous topic Next topic >

184 / 349

Helpin' Red

Free PDF documentation generator

GUI - Faces

mes base
Most basic face. It may be used to create other faces. By default, it will only display a gray
background.

Red [needs: view

view [
base

]

12| e

m box and m image

Strictly speaking, these are not faces, but styles of the base face. boxis a base with a
default transparent color and image is a base that expects and image! option, if none is
provided, an empty image with white background is provided.

Note: the default sizes for a base and box is 80x80, but for an image, is 100x100.

Red [needs: view|

view [
base
box
i mge
i mage %mal | bal | oon. j peg

185 /349

https://www.helpndoc.com

Helpin' Red

A Red: untitled — X

facets:

When Red interprets the code and finds a face, it looks for one or more of the following
datatypes after it. Each has a meaning that will change the appearance of the face
displayed. Their use will be made more clear in the examples of faces given ahead.

From Red's documentation:

Datatype Purpose

integer! Specifies the width of the face.

pair! Specifies the width and height of the face.
tuple! Specifies the color of the face’s background.

Specifies the color of the face’s background using hex

L notation (#rgb, #rrggbb, #rrggbbaa).

string! Specifies the text to be displayed by the face.

percent! Sets the data facet (useful for progress and slider types).
logic! Sets the data facet (useful for check and radio types).
image! Sets the image to be displayed as face’s background.

url! Loads the resource pointed to by the URL.

block! Sets the action for the default event of the face.

get-word! Uses an existing function as actor.

A list of facets copied from the documentation is given at the end of this chapter.
So, using facets with the base face:
Red [needs: view|

view [
base "HELLO " 130x100 %bal | oon. j peg

186 / 349

https://doc.red-lang.org/en/vid.html#_datatypes

Helpin' Red

y/

text face and text facet

There is a face named text and the text facet.

About the facet: text facets can be set in most faces and it can be formatted both in style
and in position on the face. The following code...

Red [needs: view

view [
button "hell 0"
button "bol d" bold
button "underline"” underline
button "strike" strike
return
button "top" 70x70 top
button "m ddl e" 70x70 m ddl e
button "bottont 70x70 bottom
return
button "left" 70x70 |eft
button "center" 70x70 center
button "right" 70x70 right
return
button "m x1" 70x70 top |left
button "m x2" 70x70 top center
button "m x3" 70x70 top right
return
button "No" 70x70 right bold

]

... generates:

187 /349

https://ungaretti.gitbooks.io/red-language-notebook/content/gui-faces.html#--text

Helpin' Red

Y Red: untitled - X
hello bold underline strke
top
middle
bottom

left center right

il i mix3
Mo

e (ext

The event that triggers the default actor is a click (see action facets)

Red [needs: view
view [

text "Hello"

]
12| e

Hello

Although hl, h2, h3, h4 and h5 may not be proper faces (they are styles), I think | should
describe them here as they are text faces with different font sizes and are quite handy if you
are working with text:

Red [needs view]

view [
bel ow
hli "Hell 0"
h2 "Hel |l o"
h3 "Hel | o"

188 /349

h4 "Hel | 0"
h5 "Hel | 0"

]

12| ®

Hello

Hello

Hello
Hello

Hello

the font object

Helpin' Red

Maybe you already tried to set a color to your text and noticed that just adding,

say, blue after the text face makes the background blue, but not the text. To format the font
used to display strings on faces, there is this thing the documentation calls "font object".
Think of it just as a set of commands to format the font. You write them after you declared
your face, along with other facets.

font-name <Valid font name installed on the OS>

font-size

font-color

You can also add bold italic underline or strike.

So:

Red [needs:

view [
t ext
t ext
t ext
strike
t ext
underline

]

Vi ew]

"hel | 0"
"hel | 0"
"hel | 0"

"hel | 0"

f ont - nane
f ont - nane
f ont - nane

f ont - nane

“al gerian" font-size
“al gerian" font-size
“broadway" font-size

"arial" font-size 12

E Red: untitled

HELLO HELLQO helic

189 /349

18 font-color red bold
18 font-col or blue
15 font-col or green

font-col or cyan

mmE button

The event that triggers the default actor is a click.

Red [needs: view
view [

but t on

]
12| X

action facets

Most faces allow an action facet, thatis a block of commands that is triggered by an
event. That event may be a mouse click (called "down" in Red), or something else, like
pressing pressing enter or making a selection.

For buttons the action facet trigger is "down" event (mouse click) and in the following
example it triggers the quit command that exits the program.[quit] would be the action
facet (Should I call it the default actor?, you can set you own actors as described here).

Red [needs: view

view [
button 50x40 "click ne" [quit]
]
B p
click me
colors

If you run the program below...

Red [needs: view

view [
base 30x30 aqua text "aqua" base 30x30 beige text "beige"
base 30x30 bl ack text "bl ack" base 30x30 bl ue text "blue"
return
base 30x30 brick text "brick" base 30x30 brown text "brown"

base 30x30 coal text "coal" base 30x30 coffee t ext

"cof f ee"

]
...you get:

return
base 30x30

base 30x30

return
base 30x30

base 30x30

return
base 30x30

base 30x30

return
base 30x30

base 30x30

return
base 30x30

base 30x30

return
base 30x30

base 30x30

Helpin' Red

crinmson text "crinson"
forest text "forest”
gray text "gray"

ivory text "ivory"

| eaf text "leaf"
magenta text "nmagenta”
mnt text "mnt"

ol drab text "ol drab”
orange text "orange"
pewter text "pewter"
purple text "purple"
rebol or text "rebol or”

base 30x30 cyan text

base 30x30 gol d text

base 30x30 green text

base 30x30 khaki

t ext

base 30x30 |inen text

base 30x30 mar oon

base 30x30 navy text

base 30x30 olive text

base 30x30 papaya text

base 30x30 pink text

base 30x30 rebl ue text

base 30x30 red text

m
(=1

: untitled

agqua

brick

Crimsan

gray

leaf

mint

orange

purple

beige

brown

cyan

green

linen

navy

papaya

reblue

black

coal

forest

ivory

magenta

aldrab

pewter

rebolor

blue

coffee

gold

khaki

marocn

olive

pink

red

191 /349

t ext

Helpin' Red

faces are objects

Each face is a clone of the face! template object and you can change their attributes (the
facets) during runtime:

1 Red [needs: "view]

view [
4 size 1BOx&0
3 b: button 50x20 "click me™ [bftext: "Ouch!'™ b/fsize: 60x50]
& t: text "click me too™ [t/color: red t/text: "Surprise!™]
Ber. - X Ar. - X

- click me| click me too MOUSE
11 CLICKS
Cuch!

Inside the action facet, you can refer to a face's attribute using face/<attribute>, so:

1 Red [needs: "wview]

view
3 button 100 "click me™ [face/text: "I was clicked™]
; : & X = X

click me I | was clicked

Run the script below and click the button to have an idea of the complexity of a face like a
button:

Red [needs: view] view [b: button [print b]]

mmE check

Red [needs: view
view [
check

]

" =
O

The event that triggers the action facet is a change. The current state is in the
attribute /data (true or false)

192 / 349

Helpin' Red

1 Red [needs: 'wview]
2 view [b: check "unchecked" [either b/data
3 [b/text: "checked"]
4 [b/text: "unchecked™]
s x s X
10 []unchecked [+] checked

By the way, that is not proper coding style, just seems more didactic. Take a look at

Red's Coding Style Guide.

mes radio

The event that triggers the action facet is a change. The current state is in the
attribute /data

This type represents a radio button, with an optional label text, displayed on left or right
side. Only one radio button per pane is allowed to be checked.

Red [needs: view|

view [
rl: radio "on" [t/text: "on"]
t: text "none"
return
bel ow
r2: radio "off" [t/text: "off"]
r3: radio "uh?" [t/text: "uh?"]

A Re.. — >
Don off

(® off

() uh?

mes field

To input text data.

The events that triggers the action facet is enter. The current state (the text inside the field)
is in the attribute /data. _This works both ways: if you change /data, the text displayed in

193 /349

https://doc.red-lang.org/v/v0.6.0/Coding-Style-Guide.html

the field is changed. Trying to change /data_ with code inside the view block but outside
the action facet gives you an error.

Red [needs: view
view [

field
]

12| X

[]

This example prints your input on the console when you press enter:

Red [needs: view|
view [

f: field [print f/text]
]

field allows a no-border facet*:

Red [needs: view|
view [
f: field no-border

]
" x

*Just so you know, in Red's documentation they call no-border a "flag", not a facet.

s area

The event that triggers the action facet is a change. The text inside area is in the
attribute /text. You may change the text assigning strings to /text.

Red [needs: view|
view [
area

]

Helpin' Red

ABr - X

This text was not writen
by the program. | wrote it
here.

It does not wrap text, but
scroll bars will show if
you write beyond limits,

Since any change is a triggering event, every keystroke inside the area executes the action
facet:

REed [needs: 'view]

: area [print aftext]

Y U O
— 1]
-]
(=
1]
3
fu

B} Red Console Ar - by
File
e
ev
eve

ever
every
every
every k
every ke
every key

Options
E every keyl

e text-list

The event that triggers the action facet is a selection. The strings to be listed are in the
attribute /data. The index of the selected data is in the attribute /selected

Red [needs: view

view [
tl: text-list 100x100 dat a[
"Nenad" "Gregg" "Qxie" "Rebol ek"
"Speedy G " "Mke" "Toonmas"
"Alan" "Nick" "Peter" "Carl"

]
[print tl/selected]

195 /349

Helpin' Red

12| X

Menad ~
Gre

Rebolek

Speedy G.

Myke

Toomas b4

To use the string selected, the code snippet could be:

pick face/data face/selected

This would be the same as : pick ["Nenad" "Greg" "Qtxie" "Rebolek" (...)] 3

WBEE Progress

I don't think it allows an action facet, it's just a display. The current state is setin the
attribute /data, as a percent! or a float! between O and 1.

Red [needs: view
view [
bel ow
text "Enter percentage"
text "0 - 1 (float):"
field [p/data: to percent! face/data]
p: progress

Br - X

Enter percentage
0 -1 (float):

meE slider

The event that triggers the action facet is a change. The current percentage is in the
attribute /data, as a percent! datatype.

Red [needs: view|

196 / 349

Helpin' Red

view [
title "slider”
t: text "Percentage"
slider 100x20 data 10% [t/text: to string! face/data]

]
Move the slider's cursor to see the percentage data:

A slider — X

30% Ty

...

mms panel

Creates a new area where you can display faces using the same syntax explained so far. |
think the example below is self-explanatory. Does not seem to allow an action facet.

Red [needs: view

view [

panel red [size 100x120 bel ow text red "Panel 1" check button
"Quit 1" [quit]]

panel gray [size 100x120 bel ow text gray "Panel 2" check button
"Quit 2" [quit]]
]
Y Red: untitled — X

Animportant use for panel is to create nicely formated GUIs without using too many at
commands. For example, to create the layout below, you could use two panels, one for the
upper part and another for the lower part:

B Fcd: umtidlad - E

Conliguestion fiks —

O O O

mms tab-panel

197 /1 349

Helpin' Red

Creates a set of panels where only one can be seen at a given time, selected by a tab.
Does not seem to allow an action facet. Data is at: <tab-panel>/data - Block of tabs
names (string values).

<tab-panel>/pane - List of panels corresponding to tabs list (block!).
<tab-panel>/selected - Index of selected panel or none value (integer!) (read/write). i.e.
the panel that has the focus, 1 for the first, 2 for the second and so on.

Red [needs: view
view [
Title "Tab-panel s"
t ab- panel 200x100 [
"Tab 1 " [text "First panel"]
"Tab 2 " [text "Second panel "]
"Tab 3 " [text "Third panel"]

E Tab-panels — >

Tab1 Tab2 Tab3

First panel

And each panel allows a set of faces:

Red [needs: view
view [
Title "Tab-panel s"
t ab- panel 110x140 [
"Tab 1 " [
bel ow
text font-color blue "First panel”
button "quit" [quit]
check "check to quit" [quit]

]
"Tab 2 " [text "Second panel "]

B X
Tab1l Tab2

First panel
gquit

[check to quit

198 / 349

Helpin' Red

mmE group-box

From documentation: A group-box is a container for other faces, with a visible frame
around it. This is a temporary style which will be removed once Red has the support
for edge facet.

Seems to me itit's just a panel with a border. I noticed it gives strange results when you
give ita color:

Red [needs: view

view [

group-box "box 1" [size 110x120 bel ow text "box1" check button
"Quit 1" [quit]]

group-box gray [size 110x120 bel ow text "box2" check button "Quit
2" [quit]]

group-box "box 3" olive [size 110x120 bel ow text "box2" check
button "Quit 2" [quit]]
]

B3 Red: untitled - ¥

box 1
box

[l

0]
| |

mes drop-down

The event that triggers the action facet is enter.

From the documentation: "This type represents a vertical list of text strings, displayed in a
foldable frame. A vertical scrollbar appears automatically if the content does not fit the
frame. The data facet accepts arbitrary values, but only string values will be added to the
list and displayed. Extra values of non-string datatype can be used to create associative
arrays, using strings as keys. The selected facet is a 1-based integer index indicating the
position of the selected string in the list, and not in the data facet.”

You can type text in the text-box. The content of the text-box will be in the attribute /text. It
will show when you press "enter”

Red [needs: view|

view [
t: text "-->"
drop-down "Choose one" data |
"First"
" Second"
“Third"

199 /349

https://doc.red-lang.org/en/view.html#_group_box
https://doc.red-lang.org/en/view.html#_drop_down

Helpin' Red

] [t/text: pick face/data face/sel ected]
;must press enter to change text

E! Red: u... — ot
sesid ~
First

Here is an example using events:

Red [needs: view|

view [
t: text "-->"
dr op- down "Choose one" data ["First" "Second" "Third" "Fourth"]
on-change [t/text: pick face/data facel/selected]
]
E! Red: u.. — -
- v
First
Second
Third
Fourth
mms drop-list

The event that triggers the action facet is change.
Similar to drop-down, but you cannot write in the text box and it does not show a default
text.

200 / 349

Helpin' Red

1 Red [needs: 'wview]

Hwiew [NO
4 E: CEELC “-—==1"
3 H drop-1list |"Choose one™ data

11 =] - E Red: u... — e

Third Third o

14 First
Second

You can, however, give it a default selection by specifying e.g. select 2:

Red [needs: view|

view [
t: text "-->"
drop-1list "Choose one" select 2 data |
"First"
" Second"
“Third"

] [t/text: pick face/data face/sel ected |

P Red: u...

I
x

Second b

WBEE menus

menu is a facet, but | believe that who is learning Red wants to know "what are the widgets
available for Red", and menu looks and feels like a widget to me. Since throughout

helpin.red | mention that Red's widgets are called "faces", I think it deserves an entry as
one, even though technically it may be something else.

It's very poorly documented. Toomas Vooglaid kindly provided a few examples of the use
of menus. The firstis a rewriting of an example taken from Nick Antonaccio's Short Red
Code Examples (I suggest you take a look at that excellent webpage), but using only VID:

Red [needs: view|
vi ew options [area 400x400] |

menu: |
"No Subnenus" |
“Print" prnt
"Quit" kwit

201 /349

http://redprogramming.com/Short Red Code Examples.html
http://redprogramming.com/Short Red Code Examples.html

" Sub- nenus"” |
" Sub- nenus"” |

Helpin' Red

"Subrmenul" sl
"Subnmenu2" s2
" Subnmenu3"
"Subnenu4" s4
]
]
]
]
actors: make object! |
on-nenu: func [face [object!] event [event!]]]
if event/picked = "kwit [unview all]
if event/picked = "prnt [print "print nenu sel ected"]
if event/picked = 's4 [print "subnenud sel ected"]
]
]
]
B3 Red: untitled - ¥
Mo Submenus | Sub-menus
| Sub-menus ¥ Submenul
Submenul
Submenu3 > Submenud
[

The second example is a simple framework of a text editor using menus:

Red [title: "Menus" needs:
vi ew options [editor
menu: ["Main" ["Open..."
actors: object [on-nmenu:
event/ pi cked |
open [if new name
new nanme set-focus editor]]
save-as [if new name
name editor/text]]

request-file [editor/text:

Vi ew]

area 500x300] [

open "Save as ..." save-as "Save" save]]
func [face event /Il ocal new nanme][sw tch

read editor/extra:

request-file/save [wite editor/extra: new

save [wite editor/extra editor/text]

1111]

B Red: untitled
Main

Open...
Save as ..

Save

202 /1 349

Helpin' Red

The third example makes a menu appear when you right-click on text:

Red [needs: view
view [text "Try nenu" with [
menu: ["Change text" change]
actors: object [on-nenu: func [f e]]
switch e/ picked [change |
view flags [text "Please enter new text:" field [
f/text: facel/text unview

|1[rodal]
111111
[>2] p
Try menu
Change text |
Right click

This last example can be rewritten using on-menu event:

Red [needs: view|
view [
text "Try nenu”
with [nmenu: ["Change text" change]]
on-nmenu |
f: face
i f event/picked = 'change |
view flags [
text "Please enter new text:"
field [f/text: facel/text unview
] [nodal]

WEEE camera

Displays a camera stream.

Red []
view [
cam canera 130x100 select 1

203 /349

This script saves a snapshot of the camera stream as as .jpeg image:

Red []
count: O
snapshot: does |
load rejoin [mold "% ' picture count: count + 1 '.jpeg]
]
view [
cam canera 120x100 select 1
button "Save picture” [savel/as snapshot to-inage cam'j peg]

Facets according to Red's documentation:

Facet Datatype Mandatory? Applicability Description
type word! yes all Type of graphic component
. Offset position from parent
|
offset pair! yes all top-left origin.
size pair! yes all Size of the face.
. Label text displayed in the
|
text string! no all face.
image image! no some Image displayed in the face
background.
Background color of the
color tuple! no some face inR.G.B or R.G.B.A
format.
Menu bar or contextual
menu block! no all
menu.
data any-type! no all Content data of the face.
enabled? logic! yes all Enable or disable input
events on the face.
visible? logic! yes all Display or hide the face.
selected integer! no some Forlists types, index of
currently selected element.
block! List of special keywords
flags wor dl-’ no some altering the display or

behavior of the face.

Extra face properties ina

options block! no some)
[name: value] format.

parent object! no all Back-reference to parent

https://doc.red-lang.org/en/view.html#_face_object

pane

State

rate

edge

para

font

actors

extra

draw

block!

block

integer!,
time!

object!

object!

object!

object!

any-type!

block!

< Previous topic

no

no

no

no

no

no

no

no

some

all

all

all

all

all

all

all

all

face (if any).

List of child face(s)
displayed inside the face.

Internal face state info(used
by Viewengine only).

Face’s timer. An integer
sets a frequency, a time
sets a duration, none stops
it.

(reserved for future use)

Para object reference for
text positioning.

Font object reference for
setting text facet’s font
properties.

User-provided events
handlers.

Optional user data
attached to the face (free
usage).

List of Draw commands to
be drawn on the face.

Next topic >

Helpin' Red

Generate Kindle eBooks with ease

GUI - Events and actors

Events:

Mouse clicking, mouse hovering, key pressing etc., are events that you may want to
associate with code. We saw on last chapter that there is something called action
facet that executes code triggered by a default event. You can add more blocks of code
associated with events by following this layout:

view [
face facet facet [action facet]
on-event [action]
on-event [action]
face2 facet facet [action facet]
on-event [action]
on-event [action]

There is an extensive list of possible events in the documentation. | copied it at the end of
this chapter for reference.

Each face accepts a set of events, i.e. not all events apply to all faces.

I made a short set of examples. | see no point in giving examples of each existing event,
since the logic is the same:

down - left mouse button pressed;

over - mouse cursor passing over a face;

Red [needs: view
view [
t: area 40x40 bl ue
on-down [quit]
on-over [either t/color = red [t/color: blue][t/color: red]]

]

wheel - mouse wheel being turned,;
Red [needs: view

list: ["first" "second"” "third" "fourth"]
view [
t: text "Place your cursor over here and roll the wheel”
on- wheel [
t/text: first list
list: next list
if tail? list [list: head |ist]

206 / 349

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://doc.red-lang.org/en/view.html#_events

Helpin' Red

key-down - a key has been pressed;
Red [needs: view

list: ["key" "another key" "one nore key"]

view [
bel ow
text "Click inside field and press a key"
t: text 100
a: field
on- key-down |
t/text: first list
list: next list
if tail? list [list: head list]
]
]
E Re... — >

Click inside field and press a key

ane maore key

]

time - the delay set by face’s rate facet expired.

The following example "blinks" a text at a 1 second rate (see rate in chapter GUI-
Advanced topics):
Red [needs: view

view [
t: text "Now you see..." rate 1
on-time [either t/text = "" [t/text: "Now you see..."]
[t/text: ""]]

]

close - this is a window event: the window was closed. Very useful to include code to be
executed when the user quits (closes the window).

Red [needs: view
view [

on-close [print "bye!"]
button [print "click"]

Actors

207 / 349

Helpin' Red

Actors is the name of the event handling functions in Red. That is, the code inside the
block after on-<event> . So why not call them just event handlers like most other
language do? I think is because they are an object inside the face as you can see if you run
this code below and click on the area face:

Red [Needs: view|
view [
t: area 40x40 blue on-down [print t]
on-over [either t/color = red [t/color: blue][t/color: red]]

]

You will see in the console, nearly at the end of the print, an object with
the actors described:

(...)

edge: none

para: none

font: none

actors: make object! [
on-down: func [face [object!] event [event! none!]][print t]
on-over: func [face [object!] event [event! none!]][either t/color =

red [t/color: blue] [t/color: red]]

]

extra: none

draw: none

(...)

on-create actor:
In addition to the GUI events, it is possible to define an on-create actor which will be called

when the face is shown for the first time, just before system resources are allocated for it.
Unlike other actors, on-create has only one argument, face.

Full list of event names:

Name Input type Cause

down mouse Left mouse button pressed.

up mouse Left mouse button released.
mid-down mouse Middle mouse button pressed.
mid-up mouse Middle mouse button released.
alt-down mouse Right mouse button pressed.
alt-up mouse Right mouse button released.
aux-down mouse Auxiliary mouse button pressed.
aux-up mouse Auxiliary mouse button released.

208 /349

drag-start
drag
drop
click

dbl-click

over

move
resize
moving
resizing
wheel
zoom
pan
rotate
two-tap
press-tap

key-down
key

key-up
enter
focus
unfocus

select
change

menu

close

mouse
mouse
mouse
mouse

mouse

mouse

mouse
mouse
mouse
mouse
mouse
touch
touch
touch
touch
touch

keyboard
keyboard

keyboard
keyboard
any
any

any
any

any

any

Helpin' Red

A face dragging starts.

A face is being dragged.

A dragged face has been dropped.
Left mouse click (button widgets only).
Left mouse double-click.

Mouse cursor passing over a face. This eventis
produced once when the mouse enters the face and once
when it exits. If flags facet contains all-over flag, then alll
intermediary events are produced too.

A window has moved.

A window has been resized.

A window is being moved.

A window is being resized.

The mouse wheel is being moved.

A zooming gesture (pinching) has been recognized.
A panning gesture (sweeping) has been recognized.
A rotating gesture has been recognized.

A double tapping gesture has been recognized.

A press-and-tap gesture has been recognized.

A key is pressed down.

A character was input or a special key has been pressed
(except control; shift and menu keys).

A pressed key is released.

Enter key is pressed down.

A face just got the focus.

A face just lost the focus.

A selection is made in a face with multiple choices.

A change occurred in a face accepting user inputs (text
input or selection in a list).

A menu entry is picked.

A window is closing.

209 /349

time timer The delay set by face’s rate facet expired.

Notes:

e touch events are not available for Windows XP.+
One or more moving events always precedes a move one.
One or more resizing events always precedes a resize one.

< Previous topic Next topic >

Helpin' Red

Easily create EPub books

GUI - Event!, mouse position and key
pressed

Every time an event! happens on a face, you may get information about it from
event/<see list below>.

Mouse position:

So, in the stripped-down example below, we print the event type and the mouse
coordinates when the event happens, in this case, a mouse down (click) event:

Red [needs: view|

view [
base 100x100
on-down |
print event/type
print event/offset
]
]
down
39x57
down
86x43

Key pressed:

Interestingly, in the example above, you only get none! if you try to print event/key, but in the
example below, using on-key as event, you get not only the key pressed, but also the
mouse coordinates. In fact, you get mouse coordinates from wherever the mouse is on the
screen when the key is pressed, referenced to the upper left corner of the face.

Red [needs: view

view [
area 100x100
on-key [
print event/type
print event/of fset
print event/key

211/ 349

https://www.helpndoc.com/feature-tour

Helpin' Red

key
-59x84
P

key
-36x59
s

key
-116x79
o

Note that, in the example above, if we change area for base, we get no results on the
console. However, this code works:

Red [needs: view
vi ew [base focus on-key [probe event/key]]

Here, focus seems to make the difference. Note that probe outputs a char!

Another example:

Red [needs: view
vi ew [canvas: base 150x80 "Press an arrow key" focus
draw]
on-key |
swi tch event/key
[
up [canvas/text: "move up"]
down [canvas/text: "nove down"]
| eft [canvas/text: "nove left"]
right [canvas/text: "nove right"]

]

Here is a list of events taken from Red's official documentation:

Field Returned value

type Event type (word!).

212/ 349

https://doc.red-lang.org/en/view.html

face

window

offset

key

picked

flags
away?

down?
mid-down?
alt-down?
ctrl?

shift?

< Previous topic

Helpin' Red

Face object where the event occurred (object!).
Window face where the event occured (object!).

Offset of mouse cursor relative to the face object when the event
occurred (pair!). For gestures events, returns the center point
coordinates.

Key pressed (char! word!).

New item selected in a face (integer! percent!). Fora

mouse downevent on a text-1ist, it returns the item index
underneath the mouse or none. For wheel event, it returns the number
of rotation steps. A positive value indicates that the wheel was rotated
forward, away from the user; a negative value indicates that the wheel
was rotated backward, toward the user. For menu event, it returns the
corresponding menu ID (word!). For zooming gesture, it returns a
percent value representing the relative increase/decrease. For other
gestures, its value is system-dependent for now

(Windows: ullArguments, field from GESTUREINFO).

Returns a list of one or more flags (see list below) (block!).

Returns true if the mouse cursor exits the face boundaries (logic!).
Applies only if over event is active.

Returns true if the mouse left button was pressed (logic!).
Returns true if the mouse middle button was pressed (logic!).
Returns true if the mouse right button was pressed (logic!).
Returns true if the CTRL key was pressed (logic!).

Returns true if the SHIFT key was pressed (logic!).

Next topic >

213 /349

https://msdn.microsoft.com/en-us/library/windows/desktop/dd353232(v=vs.85).aspx

Helpin' Red

Create cross-platform Qt Help files

GUI - Advanced topics

mms Style

style is used to create your own custom faces.
Red [Needs: view

view [
styl e nyface: base 70x40 cyan [quit]

nmyface "Click to quit"”

myface "Here too"

panel red 90x110 [
bel ow
myface "And here"
nmyface "Also here" blue

Y Red: untitled - X

Click to quit Here too
And here

feEe \/1€W and fWemE UNView

Multiple windows on the screen

view can also be used to show windows with faces (a face tree) that were created in
another part of the code. unview, of course, closes the view. The following code creates
two identical but independent (different face trees) windows in different parts of the screen:

Red [needs: view
nmy-view [button {click to "unview'} [unview]

print "sonething"
print "biding nmy tine"

vi ew options/no-wait ny-view [of fset: 30x100]
vi ew options/no-wait ny-view [of fset: 400x100]

214 /349

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://doc.red-lang.org/en/view.html#_the_face_tree

Helpin' Red

unview allows the refinement /only to act only on a given window:
Red [needs: view

vl: view options/no-wait |
backdrop bl ue
button "unview bl ue"[unview only vl1]
button "unview yell ow" [unview only v2]

of fset: 30x100
v2: view options/no-wait |
backdrop yel | ow
button "unview bl ue"[unview only vl1]
button "unview yell ow' [unview only v2]

of fset: 400x100

E E Reds u.. — o

unview blue unview yellow unview blue unview yellow

Refinements for view:

ftight => Zero offset and origin.
loptions =>
fflags =>

/no-wait => Return immediately - do not wait.

Refinements for unview:

fall => Close all views.
lonly => Close a given view.
mEE l00Se

loose is a facet that allows the face to be dragged (moved around) by the mouse.
Red [needs: view
view [

size 150x150
base bl ue 50x50 "Drag ne" | oose

215/ 349

meE all-over

Helpin' Red

The on-over event normally happens when the mouse cursor "enters" or "leaves" the face.

When you set the all-over facet, every event that happens when the cursor is on the face,
like movements or clicks, generates an on-over event.

In the following example the left square changes colors only when the mouse cursor
"enters"” or "leaves it" (over or not over), but the square on the right changes colors with
every little movement of the cursor over it, or with mouse left button clicks:

Red [needs:

view [

Vi ew

a: base 40x40 bl ue

on-over

[either alcolor

b: base 40x40 bl ue all-over

]

on-over

" ®

mes hidden

[either b/color

red [al/color:

red [b/color:

bl ue][a/col or:

bl ue] [b/ col or:

red]]

red]]

Makes the face invisible by default. One possible use is to create a hidden face with a
rate, SO you may have the timing without the need of showing a face.

Red [needs: view|

view [
button "I'm here"
button "“I'"m not" hidden
button "Here too"

]

Y Red: untitl.. — 3

I'm here Here too

216 /349

Helpin' Red

mes disabled

Disables the face by default (the face will not process any event until it is enabled).
Red [needs: view
view [

button "I should quit, but | don't" disabled [quit]
button "Quit" [quit]

A Red: untitled — x

| should quit, but | don't Cuit

mEE Select

Sets the selected facet of the current face. Used mostly for lists to indicate which item is
pre-selected.

Red [needs: view|

view [
tl: text-list 100x100 data |
"Nenad" "G egg" "Qxie" "Rebol ek"
"Speedy G " "Mke" "Toonas"
"Alan" "Nick" "Peter" "Carl"
] select 6
[print tl/selected]

]

" ®

Menad S
Gregg

Chae

Rebolek

SEeedi 3.

Toomas W

mms focus

Gives the focus to the current face when the window is displayed for the first time. Only one
face can have the focus. If several focus options are used on different faces, only the last

one will get the focus.

Red [needs: view|
view [

217 /1 349

Helpin' Red

field
field
field focus
field

A Red: untitled — *

meE hint

Provides a hint message inside field faces, when the field's content is empty. That text
disappears when any new content is provided (user action or setting the face/text facet).

Red [needs: view
view [
field
field hint "hint here"

E Re... — X

| | | hint here

mes default

Defines a default value for data facet when the conversion of text facet returns none.
Currently only works for text and field face types.

Red [needs: view

view [
a. field 100 default "My defaul t”
b: field 100 "My text default”

do [
print a/text
print al/data
print b/text
print b/data
]
]
A Red: untitled — x
|M].rdefault | |M],rte:-:t default

218 /349

Helpin' Red

My default

My default

My text default

*** Script Error: My has no value
*** Where: print

*** Stack: view layout do-safe

e \With

Suppose you want to create a face whose facets' values are evaluated as you create it.
You can't use evaluation in your face "arguments", so you set them with with .

This does not work:

Red [needs: view|
a: 2
b: 3
view [
base a * 30x40 b * 8.20.33
]

This works:

Red [needs: view|
a: 2
b: 3
view [
base with [
size: a * 30x40
color: b * 8.20.33

WEEE ate

rate is a facet that has a timer. When the timer "ticks" an on-time event is generated.
Notice that the rate argument is an integer! it means "times per second” , so a rate of 20
is faster than a rate of 5. You may provide a time! argument to set a time for rate.

This code makes a text blink:

Red [needs: view|

219 /349

Helpin' Red

view [
t: text "" rate 2
on-tine [either t/text = "" [t/text: "Blink"] [t/text: ""]]

]

This code makes a crude animation where a blue base crosses the window:

Red [Needs: 'View

vi ewf
si ze 150x150
b: base 40x40 blue "I nove" rate 20

on-tinme [b/offset: b/offset + 1x1]

Slower rates:

For periods longer thant 1 second, use a time! argument for rate:

Red [Needs: view

vi ewf
t: text "" rate 0:0:3
on-time [either t/text = "" [t/text: "Blink" print now time]
[t/text: "" print now time]]
]
femn eact

react is a facet that links the behavior of one face to the data of another face.

The classic example:

Red [Needs: view

vi e
progress 100x20 20% react [face/data: s/data]
s: slider 100x20 20%

]

The progress bar face reacts to the sliding of the slide face:

A Red: untitled — x
P - v
Nlink => Link objects together using a reactive relation.

lunlink =>Removes an existing reactive relation.

llater => Run the reaction on next change instead of now.

220/ 349

Helpin' Red

fwith => Specifies an optional face object (internal use).

mmemen |2y O Ut

layout is used to create custom views without displaying them. You assign your layout to a
word, and then, to show or close it, you use view or unview. With layout you can have GUI
windows "ready" for specific tasks.

However, it seem it uses the same face tree for both instances, so you cannot create two
independent windows like we did above.

The code bellow, for example, will display one window, and only show the other when you
close the first.

Red [needs: view
my-view layout [button {click to "unview'} [unview]

print "sonething"
print "biding nmy tine"

vi ew options ny-view [of fset: 30x100]
vi ew options ny-view [of fset: 400x100]

Get the size of screen:

>> print system/view/screens/1/size
1366x768

Check the chapter about system.

Create a full-screen view:

The following script creates a full-screen view:

Red [needs: view

view [size systeniview screens/1/size]

system/view/auto-sync?:

From the documentation:

"The View engine has two different modes for updating the display after changes are done to the face
tree:

2211349

https://doc.red-lang.org/en/view.html#_realtime_vs_deferred_updating_a_id_realtime_vs_deferred_updating_a

Helpin' Red

0 Realtime updating: any change to a face is immediately rendered on screen.

o0 Deferred updating: all changes to a face are not propagated on screen, until show is called on
the face, or on the parent face."

What this means is that, in the following script, if you uncomment the second line (on is
default), clicking on "Hello" will not change it to "Good bye" until you click on "Show".

Red [needs: view

{if you uncomment the next |ine
you will have to click on "Show' after
clicking on "Hello" to turn it into "Good bye"}

view [
a: button "Hello" [altext: "Good bye"]
button "Show' [show a]

]

e - e

Hello Show

Debugging View:

You may use system/view/debug?: yes to see onthe console what is happening to your
view. Try it. Remember to pass the mouse cursor over the view and do some clicking there:

Red []
systeni vi ew debug?: yes
view [button "hello0"]

< Previous topic Next topic >

222/ 349

Produce Kindle eBooks easily

GUI - Rich text

| wiki on rich-

mmE rich-text

rich-text is a face that can display text in italic, bold, color and with different font sizes. |
believe there are two ways of passing the parameters to a rich-text:

First method, using with :

Red[needs: view]
view [
rich-text 150x50 "Little exanple of rich-text” with |
data: [1x6 italic 8x7 bold 16x2 168.168.168 18 19x9 255.0.0 8]

]

Br - X

Little example rich-text

Explaining first method:

Eed [neesds: wview]
view [

rich-text 150x50 "Little example of rich-text" with |

data: [1x6 i1talic 8x7 bold 16x2 |168.168.168|18 19x9(255.0.0] 8]
] \ " |)
| font size]

] — number of chars J
starting char position \color must be *Uple"!

If you don't want to use tuples for colors, you could change the data line to:

data: reduce [1x6 '"italic 8x7 'bold 16x2 gray 18 19x9 red 8]

Second method, using e rtd-layout

rtd-layout returns a rich-text face from a RTD source code. | believe it is simpler, and

allows you to use rich-text from external sources, but you should read the draw chapter first,
and remember to use compose/deep in view. compose evaluates things in parentheses, and

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://github.com/red/red/wiki/[DOC]-Rich-Text-support
https://github.com/red/red/wiki/[DOC]-Rich-Text-support

Helpin' Red

itis used to "bring" outside Red code into the view dialect block, and must have the /deep
refinement because the parentheses are nested inside brackets.

Red[needs: view]

myrtf: rtd-layout [i "This " /i b "uses " /b red font 14 "rtd-
[ayout™ /font]

Vi ew conpose/ deep |
rich-text 200x50 draw [text OxO (nyrtf)]
rich-text 200x50 draw [text 20x10 (nyrtf)] ;the pair! |ocates the

t ext

]

B3 Red: untitled — X

This uses r'td-layout This uses r'td-layout

Please take a look at Toomas Vooglaid's rich-text examples page. With his kind
permission, | added a few below. Toomas also has an excellent gist with a variety of Red

examples on many topics.

Red [
Aut hor: "Toomas Voogl ai d”

]

view [rich-text 200x50 "Little exanple of rich-text" with [
data: [1x6 italic 8x10 bold 16x2 168.168. 168 19x9 255.0.0 18]]

]
rb: rtd-layout [i "And " /i b "another " /b red font 14 "exanple" /font]

vi ew conpose/ deep [rich-text 200x50 draw [text OxO (rb)]]

E Red: unti... — =

Little example I"ICh-tE}{t

Red [

Purpose: {Relatively sinple rich-text deno}

Hel p: {Enter text. Select sone text, choose formatting from
contextual nenu (alt-click).

Press "View' to see formatting, "Text" to return to text

editing, "Clear"” to clear formatting.}
]
count-nl: func [face /local text n x][

n: 0 x: facel/sel ected/x

text: copy facel/text

224 | 349

https://github.com/toomasv/learning/tree/master/snippets/rich-text
https://gist.github.com/toomasv

Helpin' Red

while [all [
text: find/tail text #"7~/"
X >= i ndex? text

nn+1

Vi ew conpose |
src: area wap with |
menu: ["ltalic" italic "Bold" bold "Underline" underline]
]
on-menu [
nls: count-nl face
append rt/data reduce |
as-pair face/selected/x - nls face/selected/y -
facel/ selected/x + 1 event/picked
]
]
at 16x12 rt: rich-text hidden with |
data: copy []
size: src/size - 7x3
| i ne-spacing: 15
]
bel ow
button "View' [
if showrt: face/text = "View' [rt/text: copy src/text]
face/text: pick ["Text" "View'] rt/visible?: showrt

]

button "Clear” [clear rt/data]

D Red: untitled — X
Type text here, select Text
using mouse left button
and change properties

Clear

with right button. Then
click on "View"

Red [
Purpose: {Relatively sinple rich-text deno}
Hel p: {Select sone text in first box, choose formatting from
context-nmenu (alt-click)
"Clear" clears formatting.}
]
count-nl: func [face /local text n x]]|
n: 0 x: facel/sel ected/x
text: copy face/text
while [all [
text: find/tail text #"'~/"
X >= index? text

11

225/ 349

Helpin' Red

] n
]
Vi ew conpose |
bel ow src: area wap with |
menu: ["ltalic" italic "Bold" bold "Underline" underline]
]
on-nmenu |
nls: count-nl face
append rt/data reduce |
as-pair face/selected/x - nls face/selected/y -
facel/ sel ected/ x + 1 event/ pi cked

]

]
on-key [rt/text: facel/text rt/data: rt/data]

return
pnl: panel white with |
size: src/size
draw. conpose [pen silver box 0x0 (size - 1)]
pane: |ayout/only conpose |
at 7x3 rt: rich-text with |
size: src/size - 10x6 data: copy []

]
]

button "Clear” [clear rt/data]

D Red: untitled — x
Use mouse right and left Use mouse right and left
buttons to select text buttens to select text on
on the left box and the left box and change
change it's properties. it's properties.
Clear
< Previous topic Next topic >

226 /1 349

Easy to use tool to create HTML Help files and Help web sites

GUI - Create views programmatically

VID is the graphical dialect of Red. All the GUI commands (base, across, style, etc) are
VID code.

FACE TREE - the object! of a graphical view. view and show.can only display this object!

LAYOUT transforms any block containing VID code into a face tree.
VIEW transforms (if needed) a block of VID code into a face tree and display it as a GUI

SHOW displays a face tree. It can display a 1ayout (or even a view), but it cannot display a
GUI out of a block of VID code. Inside a VID block, it updates a face, however, on Red,
unlike Rebol, that update is automatic unless you change settings on system/view/auto-
sync?, as explained here.

So, the argument for view is just a block of VID code and you can change it:
Red[needs: view|
board: []

append board [bel ow button "Quit" [quit] field]
vi ew board

521 *

Chuit

Using external variables as facets for a view

The built-in function compose evaluates things inside parentheses and you may "pass”
parameters to view using it:

Red [needs: view
txt: "My text"

size: 150
vi ew conpose [button (txt) (size)]
Br - X

My text

https://www.helpndoc.com/help-authoring-tool

Changing a GUI from the GUl itself

If the GUI is created from a block with compose and then rendered by view, any change in
the values in the block is reflected on the GUI "on the fly":

Red[needs: view]
board: conpose |

a: box bl ue 50x50
button "Move blue box" [a/offset: (a/offset: al/offset + 5x0)]

]

vi ew board

Br - x BRrR - x

. Mowve blue box | MMowve blue box

few clicks —»

Hiding/showing faces

Faces have the attribute visible? that can be changed from true (default) to false to
hide a face. In the following script, click the button to toggle on and off the visibility of the
field:

Red [needs: view|
view [
f: field
button "H de field" [f/visible?: not f/visible?]

R — x R - X

Hide field Hide field
click »

An elegant example (by Toomas Vooglaid):

Red[needs: view]

view [
f: field
button "H de field" [
face/text: pick [
"Hi de field" "Show field"
] f/visible?: not f/visible?

Pt

Hide field

< Previous topic

Helpin' Red

<«click »

B-r.

X

Show field

229 /349

Next topic >

Free HTML Help documentation generator

Parse

Very good information also in red-by-example. and in the links in Parse links chapter.

Parse is a "dialect” of Red (a DSL - domain specific language to be precise), that is, a
mini-language embedded inside Red. The Red interpreter you download comes with a few
of these languages: VID, for GUI creation, DRAW for graphics and PARSE.

Parse should be studied as a small programming language.

native! p arS e

In a very basic level, parse picks each element of the input and submits it to the
corresponding rule in the rules block. It returns true if all rules are matched or false, if one
fails to match its corresponding rule.

A most basic example would be to simply check if each element in the input block is equal
to the corresponding rule in the rules' block:

Red[]

a: ["fox" "dog" "ow" "rat" "elk" "cat"]

print parse a ["fox" "dog" "ow " "rat" "elk" "cat"]
true

For the sake of clarity in the description of parse, lets rewrite the example above with a
different format:

Red[]
a: ["fox" "dog" "ow" "rat" "elk" "cat"]

print parse a |
"f ox"
" dog"
"owl "
"rat"
"el k"
"cat"

true

The match may be done with datatypes:

Red]

https://www.helpndoc.com
http://www.red-by-example.org/parse.html

a: [33 18.2 #'c" "rat"]

print parse a |
i nt eger!
float!
char!
string!

]

true

Regular code may be inserted in the rules' block by enclosing it in parenthesis:

Red[]
a: ["fox" "dog" "ow" "rat" "el k"]

print parse a |
"f ox"
" dog"
"owl "
(loop 3 [print "just regular code herel"])
"rat"
"el k"

]

just regular code here!
just regular code here!
just regular code here!
true

Parse Refinements:

/case =
/part =>
ftrace =>

Important clarification:

parse command returns true or false, but the matching itself passes to parse success
or failure. Have that in mind to avoid confusion.

returns true or false «—
palrse [=input=][rule_1rule 2]

— e [

sends Succeggjff
or failure.

< Previous topic Next topic >

Easily create Help documents

Debugging Parse

Parse dialect is powerful, but it's also hard to visualize and notoriously difficult to debug.
Before you proceed to the more advanced features of parse, | suggest you learn how to
debug your code. There are two ways that 'm aware of: using the parse-trace function and
printing information along the evaluation.

A P arse-trace

Parses the input, but also prints (traces) every step of the process.

Red[]

a: ["fox" "ow" "rat"]

print parse-trace a ["fox" "owl " "rat"]
-->

match: ["fox" "owl" "rat"]
input: ["fox" "owl" "rat"]
==> matched

match: ["owl" "rat"]
input: ["owl" "rat"]

==> matched

match: ["rat"]

input: ["rat"]

==> matched
return: true
true
Red[]
a: ["fox" "ow" "rat"]
print parse-trace a [["fox" | "cow'] "ow " "rat"]
-->
match: [["fox" | "cow"] "owl" "rat"]
input: ["fox" "owl" "rat"]
-->
match: ["fox" | "cow"
input: ["fox" "owl" "rat"]
==> matched
match: [| "cow"
input: ["owl" "rat"]
<__

match: ["owl" "rat"]
input: ["owl" "rat"]
==> matched

match: ["rat"]

https://www.helpndoc.com/feature-tour

input: ["rat"]

==> matched
return: true
true

print statements:

Put print statements in strategic locations to inform the status of the evaluation:

Red[]

a: ["fox" "ow" "rat"]

print parse a ["fox" (print "reached fox")
"owm" (print "reached ow")
"rat" (print "reached the end")

]

reached fox
reached owl
reached the end
true

< Previous topic Next topic >

Free help authoring environment

Parse - Matching

FARSESkip

Skips (jJumps) one element:
Red[]
a: ["fox" "dog" "ow" "rat" "el k" "cat"]
print parse a |
"fox"
skip
"oul "
"rat"

"el k"
"cat"

true

Another example, noting that strings are series of characters, and are a common input
block:

Red []
a:. "XYzZhel |l o"
print parse a [skip skip skip "hello"]

true

Or, more elegantly (check repetition):

Red []
a: "XYzZhel |l o"
print parse a [3 skip "hello"]

true

mese tO and e thru

Skips elements until if finds a match. thru sets the input is set past the match, to sets it
before the match.

https://www.helpndoc.com/help-authoring-tool

Helpin' Red

The next two examples illustrate well the use of to and thru. They use strings (series of
char!) as input blocks.

Red[]

a: "big black cat”

parse a [to "black" insert "FAT "]
print a

big FAT black cat

Red[]

a: "big black cat"

parse a [thru "black" insert " FAT"]
print a

big black FAT cat
So:

Eed[]

a: "big black,cat"

\

to thru

parse a [\gf“klaci" insert "

LE|

:'|4
H

Example of to:
Red[]
a: ["fox" "dog" "ow" "rat" "elk" "cat" "bat"]

print parse a |

"fox"
to "el k"
"el k"
"cat"
"bat"

]

true

Example of thru:

Red[]
a: ["fox" "dog" "ow " "rat" "elk" "cat" "bat"]
print parse a |

"fox"

thru "el k"

n Cat n
n bat n

235 /349

true

BARSE €N d

Returns true if all input items have been checked by parse.
Red[]
a: [33 18.2 #'c" "rat"]
print parse a |
i nt eger!
float!
char!
string!
end

]

true

However, the most common use of end is as a reference for to and thru keywords, to skip
all inputs and bring the parse to the end of the input block.

Red[]

a: [3318.2 #'c" "rat"]
print parse a [to end]

true

sest ahead

Checks if the next element (ahead) matches a rule.
Red[]
a: ["fox" "dog" "ow" "rat"]
print parse a |
"f ox"
" dog”
ahead "ow "

n OV\A n
n r at n

true

BRSENONEe

Helpin' Red

Always returns sucess. Itis a catch-all rule
Red[]
a: ["fox" "dog" "ow" "rat"]

print parse a |
"f ox"
" dog"
none
"owl "
"rat"

true

e O Pt

If it finds a match, it returns sucess, and parse follows to the next input. If the input does not
match the opt rule, parse skips (ignores) this opt rule and checks the same input with the
next rule.

Red[]
a: ["fox" "dog" "ow" "rat"]

print parse a |
"f ox"
" dogll
opt "ow "
"rat"

print parse a |
"f ox"
" dogll
opt " BAT"

" OV\A "
"rat"

]

true
true

Another example:
Red []
a: ["Ms" "Robinson"]
print parse a [opt "M s" "Robinson"]

a: ["Robinson"]
print parse a [opt "M s" "Robinson"]

a: ["Mss" "Robinson"]
print parse a [opt "M s" "Robinson"]

237 1349

Helpin' Red

Another example:
a: ["elk"™ "cat" "ow "]

parse a [opt ["fig"] "elk"™ "cat”™ "ow"™] ; never or at |east once
true

parse a [opt ["elk" "cat"] "ow "] ; never or at |east once
true

parse a [opt ["elk"” "ow"] “cat"] ; never or at |east once
false *

* If the entry does not match the opt rule , the parse skips this rule and checks the
same entry by the following rule.

One more example for opt :

hd: "nountai nt rack"” ; string

parse hd [opt "nountain" "track"] ; == true

parse hd [opt "nountain" "rights"] ; == fal se
mRsE NOt

The official definition of the not rule is that it "invert the result of the sub-rule”. To me, it
seems as a rule that excludes a possible match from the next rule.
It does not "consume” input.

Red[]
a: ["fox" "dog" "ow " "rat"]

print parse a |
"f ox"
" dogn
not "ow "
skip
"rat"

print parse a |
"f ox"
" dogn
not " COW
skip
"rat"

false
true

238 /349

mEsE quote

Matches the argument exactly as it is except for paren!
This gives an error:
>> parse [x] [x]
*** Script Error: PARSE - invalid rule or usage of rule: x
*** Where: parse
*¥** Stack:

But this works:

>> parse [x] [quote Xx]
== true

>> parse ['x] [quote 'x]
== true

>> parse [[x]] [quote [x]]
== true

< Previous topic Next topic >

Helpin' Red

Easy EPub and documentation editor

Parse - Ordered Choices

Rules accept a"ordered choice" operator, represented by "|":

If a block of rules separated by "[" is found by parse, it will try each rule, from left to right until
it finds a match, returning success and going to the next rule after the block. if none of them
is a match, of course, it fails and the parsing is stopped returning false.

if fail, try next if fail, try next

parse ["input block"] [rulel | rule2 | rule3]

hhhﬁ__ dﬁxf/ e hhﬁhi
if all rules fail,
returns "false"

if any is a success, returns "true"

or P
if fail, try next if fail, try next f
parse ["input block"] [rulel | rule2 | rule3d] rule4 ruled ...
e M

if any is a success, keeps going..."

This is similar to a logic "or" operator, but order matters.

Examplel:

Red[]

a: ["fox" "rat" "elk"]
b: ["fox" "ow" "el k"]
print parse a |
"f ox"
["rat” | "ow "]
"el k"
]
print parse b [
"f ox"
["rat” | "owWm "] "cat" | "whatever"]
"el k"

true
true

240/ 349

https://www.helpndoc.com

Helpin' Red

Example2:

Red[]
print parse ["this is a string"] [integer! (print "integer") | string!
(print "string") | char! (print "char")]

string
true

"ailt —— ¥ “sucess”

print parsa [" "1 [integer! ([(print " E] string! (priat "] ahar! (print "} 1
k«-..._____‘___ ___.___,_,_,.r"'s

"true"

Example3:

Red[]

a: ["string" 3 #"A"]

print parse a [integer! (print "I") | string! (print "S") | time! (print
"]

S
false

Repeating the script with parse-trace instead of print parse (color highlights, newlines,
bold font and comments added by edition):

-->
match: [integer! (print "I") | string! (print "S") | time
input: ["string" 3 #"A"]
==> not matched

match: [string! (print "S") | time! (print "T")]
input: ["string” 3 #"A"]
==> matched
;keeps going to execute commands in
parenthesis
match: [(print "S") | time! (print "T")]
input: [3 #"A"]

S

match: [| time! (print "T")]

input: [3 #"A"]
return: false ;too much input and not enough rules ->
false

To obtain true, we may add more rules to the successful ordered choice...

Red[]
a: ["string" 3 #"A"]
print parse a [integer! (print "I") | string! (print "S") integer! char!

| integer! (print "T")]

241/ 349

S
true

... or enclose the ordered choices in brackets and add rules to the main rule block:

Red[]
a: ["string" 3 #"A"]
print parse a [[integer! (print "I") | string! (print "S") | tine!

(print "T")] integer! char!]

S
true

< Previous topic Next topic >

Easy EBook and documentation generator

Parse - Repetition and Matching loops

Keywords: some, any, opt, while.

Rule rule can be optional or repeated in a different way.

Keyword or Value Description

3 <rule> repeat the rule 3 times

1 3 <rule> repeat rule 1 to 3 times

0 3 <rule> repeat the rule O to 3 times

some repeat its rule(s) while (and if) it gets a
true (match) from the rule. Returns
false ifitdoesn't get at least one
match (makes the parse false).

any repeat its rule(s) until it gets a false (no
match) from the rule. Always returns
true to the parse expression.

while see text below.

Known Repetition Number - Examples

>> parse "fogfogfog" [3 "fog"]; determined exactly
== true

>> parse "fogfogfog" [0 5 "fog"]; determined by range
== true

Script examples for exact repetitions:
Red[]
a: ["fox" "dog" "ow" "rat" "elk" "cat"]
print parse a |
4 skip

"el k"
"cat"

https://www.helpndoc.com

true
Red[]
a: ["rat” "rat" "rat" "rat" "el k" "cat"]

print parse a |

4 "rat"
"el k"
"cat"
]
true
Or a range:
Red[]

a: [”I’at " ”I’at " nel kn ”Cat ||]

print parse a |
04 "rat"

" el kn
" Cat "

true

Matching Loops:

PARSE SOME, parsE any
Again:

some - repeat its rule(s) while (and if) it gets a true (match) from the rule. Returns false if it
doesn't get at least one match (makes the parse false).

any - repeat its rule(s) until it gets a false (no match) from the rule. Always returns true to the
parse expression

Both return success for as long as they find matches in the input, the difference is that some
requires at least one occurrence of the input (match), while any will return success even
with no match.

Red[]
a: ["fox" "dog" "fox" "dog" "fox" "dog" "elk" "cat"]

print parse a |
some ["fox" "dog"]

" el ku
" Cat "

]

print parse a |

Helpin' Red

any ["fox" "dog"]
"el k"
"cat"

]

true

true

Red[]

a: ["elk" "cat"]

print parse a |
some ["fox" "dog"]
"el k"
"cat"

]

print parse a |
any ["fox" "dog"]
"el k"
"cat"

]

false

true

Example that shows the "loop™ behavior more clearly:

Red []
tXt:
a bl ue cat

print parse txt

I found blue!
I found blue!
I found blue!
I found blue!
true

>>

Explaining the example:

[sone
[thru "blue" (print
if finds a match
to end]
e firstloop:

{In a one-story blue house
— everything was bl ue

[some [thru "blue"

found blue!")]

(print "I

this rule wll

blue house, there was a blue person,

245/ 349

found blue!")]

there was a bl ue person,
VWhat col or were the stairs?}

to end]

be repeated while

a blue cat - everything was blue! What color were the stairs?
->found a match, so repeat[thru "blue" (print "I found blue!")]

e second loop:
blue person,
a blue cat - everything was blue! What color were the stairs?
->found a match, so repeat[thru “blue" (print "I found bluel")]
e third loop:

blue cat - everything was blue! What color were the stairs?
->found a match, sorepeat[thru "blue” (print "I found bluel")]

e fourth loop:

blue! What color were the stairs?
->found a match, so repeat[thru "blue" (print "I found blue!")]

-> NO match, so exits some loop and goes for the next rule: to end, which is a match,
because it simply goes to the end.

Since all rules found a match (some found more than one), parse returns true.

mesE While

Definitely not for beginners, as kindly explained by Vladimir Vasilyev (@9214) from gitter:

>> parse x: [a 1 a 1][while [ahead ['a change quote 1 2] | 'a quote 2]]
== true

>> X
= [a 2 a 2]

>> parse x: [a 1 a 1][any [ahead ['a change quote 1 2] | 'a quote 2]]
== false

>> X
== [a 2 a 1]

The main difference between while and any is that the former continues parsing even if
index did not advance after successful match, while the latter fails as soon as index
remained at the same position, even if match was successful.

That's why | went with ahead - it's a look-ahead rule, that matches "in advance”, but keeps
index where itis. In the example above, ahead ['a change quote 1 2] will match
successfully, and 1 after a will be changed to 2, but the input position will not advance,
because ahead looks ahead, while standing where itis now, Outcomes are:

https://gitter.im/red/help

e Withwhile, firstahead ... changes 1 to 2 without advancing the input, but since while
doesn't care about that, it goes to the next iteration, on which top-level rule will fail and
backtrack (an alternate after |)to 'a quote 2, which will match (because we've just
changed a 1 to a 2 and advance the input, thus leading us to the end marker and
successful parsing of the whole series.

e With any, however, first ahead ... changes 1 to 2 ,does notadvance the input, and
any, because it's picky about input advancing, bails out without going to the second
iteration.

The use-case for while is a tricky one. In my experience, | used it for context-sensitive
parsing (that is, you first look behind and ahead, determining the context of a token, and
only then decide what to do; "looking behind and ahead requires matching various rules
while standing where you are, at current position*) and also in situations where input needs
to be modified during parsing (example above), or if parsing depends on some outside
state. It's also proved to be useful for deep-first traversal of tree-like structures - situation is
the same, you're tinkering with node, matching some rules successfully, but the position
should not advance if you've matched something, otherwise you'll loose the track of the
current node.

That is, while is anything but newbie-friendly. I'd noted in your tutorials that you shouldn't

worry about it if you're a newcomer, and that it is useful in advanced situations, where you
need more tight control over parsing."

< Previous topic Next topic >

Easy EBook and documentation generator

Parse - Storing input

mRsE Sel and BRsE COPY

Both get the input of the next parse rule, if successful. The difference happens when you
have a subexpression (see examples below). The set operation sets the given variable to
the first matched value, while the copy operation copies the whole part of the input matched
by the subexpression.

Red[]
a: ["fox" "rat" "el k"]

parse a |
"f ox"
set b

"rat"
"el k"

]
print b

rat

Red[]

bl ock: [7 9]

print parse block [set value integer! integer!]
print val ue

true
7

Red[]

bl ock: [6 3]

print parse block [integer! copy value integer!]
print val ue

true
3

Explaining the code:

https://www.helpndoc.com

Red]] 1
block: [& 2]
print par=se block [integer! copy value integer!
print wvalue

true
3

Showing the difference between copy and set:

Set gets only the first match of a subexpression:

Red[]

a: ["cat" "dog" "bat" "ow "]
parse a ["cat" set b any string!]
print b

dog

Copy gets all the matches of a subexpression:

Red[]

a: ["cat" "dog" "bat" "ow "]

parse a ["cat" copy b any string!]
print b

dog bat owl

mest COllect and mrse kKeep

If you have a collect block inside your rules' block, parse will no longer return a logical true
or false, instead it will return a block with all the successes that preceded by the built-in
function (command) keep .

Red[]
a: ["fox" "dog" "ow" "rat" "elk" "cat"]

print parse a |
collect|
keep "fox"
" dog"
"owl "
keep "rat"
keep "cow!
"cat"”

]

Helpin' Red

fox rat

BARSE collect set

parse will return a logical true or false, and insert all the successes preceded by the word
keep in a new block.

Red[]
a: ["fox" "dog" "ow" "rat" "elk" "cat"]

print parse a |
collect set b |

keep "fox"
" dog"
"oul "
keep "rat"
keep "cow!
"cat"
]

]

print b

false

fox rat

BRSE collect into

parse will return a logical true or false, and insert all the successes preceded by the word
keep in a block you previously created. It seems to append results to the block.

Red[]
a: ["fox" "dog" "ow" "rat" "elk" "cat"]
b:""

print parse a |
collect into b |

keep "fox"
" dog"
"owl "
keep "rat"
keep "cow!'
"cat"
]
]
print b

250 /349

false
foxrat

Collecting the input using set-word syntax

During parse processing, you may assign what is left of the input to a word (variable):

Red[]
a: ["fox" "dog" "ow" "rat" "elk" "cat"]

print parse a |
"f ox"
" dog"
b

]
probe b

false
Ilowlll Ilr\atll Ilelkll “Cat“]

Red []

txt: "They are one person, they are two together"
parse txt [thru "person, " b:]

print b

they are two together

< Previous topic Next topic >

Full-featured EBook editor

Parse - Modifying input

mEsE INsert

Inserts a value in the input block at the current input position.
Red[]

a: ["fox" "dog" "ow" "rat"]
print parse a |
"f ox"
" dog"
insert 33
"owl "
"rat"

]

print a

true
fox dog 33 owl rat

Another example using a string:

Red[]

a: "My big eyes”

parse a [thru "big" insert " brown"]
print a

My big brown eyes

BARSE F'emove

Removes the matched input from the input block.
Red[]

a: ["fox" "dog" "ow" "rat"]
print parse a |
"fox"
renmove "dog”
renmove "ow "
"rat"

]

print a

true
fox rat

https://www.helpndoc.com/create-epub-ebooks

Helpin' Red

Another example, using strings:

Red[]

a: "My big eyes”

parse a [to "big" renove "big "]
print a

My eyes

mese cChange

Changes a matched input:

Red[]

a: ["fox" "dog" "ow" "rat"]
print parse a |
"f ox"
" dog"
change "owl " " COW
"owl "
"rat"

]

print a

false
fox dog COW rat

< Previous topic Next topic >

253 /349

Full-featured Documentation generator

Parse - Control flow

PARSE if

if tests the result of a logic expression within parenthesis. It is usually followed by a rulel
| rule 2.

If there is no ordered choice (rulel | rule 2) after the if, and the result of the logic
expressionis false or none the parsing is halted, returning false.

Red[]
bl ock: [6 3 7]
print parse block [integer! integer! if (1

1) integer!]

print parse block [integer! integer! if (1 2) integer!]

true
false

With ordered choices: If the result of this logic expressionis true, the parsing loop uses
rulel, ifit's false or none, it uses rule2 for the next parsing match attempt.

frue
f.,-r-__-h“

if (logic test) [rulel | ruleZ] rule rule ...
false

Red[]
block: [6 3 7]
print parse block [integer! integer! if (1

1) [integer! | string!]]

print parse block [integer! integer! if (1 2) [integer! | string!]]

true
false

Another simple example:

Red[]

block: [1 2]

print parse block [set value integer! if (value = 1) to end]
bl ock: [2 2]

print parse block [set value integer! if (value = 1) to end]

https://www.helpndoc.com

Helpin' Red

true
false

mrsE then

Regardless of failure or success of what follows, skip the next alternate rule. That is, when a
then is encountered, the next alternate rule is disabled.

I couldn't find good examples and can't think of any use for that.
mRsE INtO

Switch input to matched series (string or block) and parse it with rule.
Could not find good examples.

mrse fail

Force current rule to fail and backtrack.
Could not find good examples. I believe it is related mostly, if not completely, related to
matching loops (any, some and while).

mrsE break

Break out of a matching loop, returning success.
Could not find good examples. I believe it is related mostly, if not completely, related to
matching loops (any, some and while), specifically to offer a way to avoid endless loops.

mRsE eject

Break out of a matching loop, returning failure.
Could not find good examples. | believe it is related mostly to matching loops (any, some
and while)

< Previous topic Next topic >

255/ 349

Easily create PDF Help documents

Parse usage - Validate inputs

Validating alphanumeric entries:

Before we proceed, | should warn you that the datatyping of Red may cause some trouble
to programming. For example, a single-digit number in Red may be an integer!, a
string!, a char!, or something else. So if you have some inexplicable bugs in your script,
make sure your debugging checks the datatypes being parsed.

Here is a script that prompts the user to enter 4 single digit numbers and check if the entry
is OK until the entry is "q":

Red []
entry:
while [entry <> "q"] [
entry: ask "Enter four digits in the 1-8 range:

either (parse entry [sonme ["1" | "2" | "3" | "4" | "5" | "6" | "7"
| "8"11) and ((length? entry) = 4) |
print "OK"]

[
print "Not OKI'"

]
]

Thatworks, bUt[" e I e e - L I C L A I A maybe substituted
for charset ["12345678"]:

Red []
entry:
val idchar: charset ["12345678"]
while [entry <> "q"] [
entry: ask "Enter four digits in the 1-8 range:
either (parse entry [some validchar]) and ((length? entry) = 4) |
print "OK"]
[
print "Not OKI'"

]
]

Since parse checks character by character, charset ["12345678"] may also be written
ascharset [#'1" - #'8"] | Red understands that that is a sequence of characters. So,
for example, your program may be made to accept any numeric and lower case ASCII
characters by using charset [#'0" - #'9" #'a" - #'2z"].

Crude phone number validator (from Rebol/Core manual) - Rules referring to
rules:

https://www.helpndoc.com/feature-tour

Helpin' Red

Red []

digits: charset "0123456789"
area-code: ["(" 3 digits ")"]
phone-num [3 digits "-" 4 digits]

print parse "(707)467-8000" [[area-code | none] phone-nuni

true

Crude email validator (from Red blog):

Red []

digit: charset "0123456789"

letters: charset [#"a" - #"z" #"'A" - #'7"]
speci al : charset

chars: union union letters special digit
wor d: [some chars]

host : [wor d]

domai n: [word sone [dot word]]

emai | : [host "@ dommai n]

print parse "john@oe.com email

print parse "n00b@ ost.island. org" enail
print parse "h4xOr-1| 33t @omai n. net" enai l

true
true
true

Validating math expressions in string form (from Rebol/Core manual):

Notice that this example uses recursing rules (a rule that refer to itself).

Red []

expr: [term ["+" | "-"] expr | tern]
term [factor ["*" | "/"] term| factor]
factor: [primary "**" factor | primary]
primary: [some digit | "(" expr ")"]

digit: charset "0123456789"

print parse "1+2*(3-2)/4" expr
print parse "1-(3/)+2" expr

true
false

257 1 349

Helpin' Red

< Previous topic Next topic >

258 /349

Helpin' Red

Free HTML Help documentation generator

Parse usage - Extract data

Counting words on text :

Red []
a: "Not great Britain nor small Britain, just Britain"

count: O
parse a [any [thru "Britain" (count: count + 1)]]

print count

Explaining the code:

Aslong as thru "Britain" finds a "Britain", any will repeat the rule

Eed

a: "Not great Britain nor small Britain, just Britain"

count: 0
parse a :any'tthru "Britain™ {(count: count + 1}):
print count //

"any" will repeat this block until there is no match

EBed [

a: "Not ¢ small Britain, just Britain'
count: 0

parse a [any (thru "E:i:ainf){count: count + 1)1]]

print count
"thru" moves the input to AFTER the match

Notice that if you used to instead of thru, the input would be moved to BEFORE the

_——---'-'-'.I‘I

match, creating an endless loop, since "Britain” would be a match over and over again.

Extracting the middle part of a text :

To extract the remaining part of a text from a given point, you may use word: , as explained
in the Storing Input chapter. To extract text between two parse matchings, you may use

copy :

259 /349

https://www.helpndoc.com

Red []

txt: "They are one person, they are two together”
parse txt [thru "person, " copy b to " tw"]
print b

they are

Extract data from the Internet:

This is a very basic example. | have created an html page at helpin.red:

http://helpin.red/samples/samplehtmll1.html. The htmlis very simple and you can see it by
typing print read http://helpin.red/samples/samplehtmli.html atthe console.

Since | know the html, | can extract some information with the code below:

Red []
txt: read http://hel pin.red/ sanpl es/ sanpl ehtm 1. ht n
parse txt [
thru "today"
2 thru ">"
copy weatherl to "<"
thru "tonorrow
2 thru ">"
copy weather2 to "<"
thru "week"
2 thru ">"
copy weather3 to "<"

]

print

print []

print ["Today: " weat her 1]

print ["Tonorrow. " weather?2]

print ["Next week: " #"~(tab)" weather3]

Acording to helpin.red website weather will be:

Today: sunny
Tomorrow: horrible
Next week: really really horrible

I will show how the parsing works for extracting the weather of "today" to the "weatherl"
variable:

thru "today"

i</td>
<td style="color: black;">sunny</td>
</tr>
<tr>

http://helpin.red/samples/samplehtml1.html

Helpin' Red

2 thru ">" ;this skips text until (after) the character ">". Does it 2 tines!

">sunny</td>
</tr>
<tr>

copy weatherl to "<" ; this copies to "weatherl1l" all that it finds unti
(before) a "<".

>sunny</td>

1]
1l
v

weatherl
</tr>
<tr>

< Previous topic Next topic >

261 /349

Helpin' Red

Easily create EPub books

Parse usage - Manipulating text

Inserting words in text:

Red []

a: "Not great Britain nor small Britain, just Britain"

parse a [any [to "Britain” insert "blue " skip]]

print a

Not great blue Britain nor small blue Britain, just blue Britain

Notice that skip was added to the rule to prevent an endless loop: to takes the input to
before the match, so "Britain” would be matched over and over again if we dont skip it.

Removing words from text:

Red []

a: "Not great Britain nor small Britain, just Britain"

parse a [any [to renpbve "Britain"]] ;seens to work the sane as [to
"Britain" renove "Britain"]

print a

Not great nor small , just
Explaining the code:

First:

Red []

parse a [any Eto remove ”5:;:&;:“):

print a

"any" repeats the rule until no match is found.

Then:

Red [}

parse a

print

fu

"to 'Britain" takes the input to BEFORE the match ('Britain’)
and "remove" removes it,

262 /349

https://www.helpndoc.com/feature-tour

Helpin' Red

Changing words from text:
Red []
a: "Not great Britain nor small Britain, just Britain"
parse a [any [to "Britain" change "Britain" "Australia"]] ;[to change

"Britain" "Australia"] also seens to work
print a

Not great Australia nor small Australia, just Australia

< Previous topic Next topic >

263 /349

Qt Help documentation made easy

Links to pages that may help you to learn how to use parse:

Red specific links:

http:/Amww.red-by-example.org/parse.html - Maybe the best resource available.

http://Aww.red-lang.org/2013/11/041-introducing-parse.html

http://Aww.michaelsydenham.com/reds-parse-dialect/

https://github.com/red/red/issues/3478 - Not what you expect, but informative anyway.
Discusses issues of parse.

The following links refer to Parse in Rebol :

http://video.respectech.com - with interactive editor.

http://iww.rebol.com/docs/core23/rebolcore-15.html
http://www.codeconscious.com/rebol/parse-tutorial.html
http://Awww.codeconscious.com/rebol/r2-to-r3-parse.html
http:/Aww.rebol.com/r3/docs/concepts/parsing-summary.html - very informative.
http://Aww.rebol.com/r3/docs/functions/parse.html
http://blog.hostilefork.com/why-rebol-red-parse-cool/

https://en.wikibooks.org/wiki/Rebol Programming/Language Features/Parse/Parse_expr
essions

http://rebol2.blogspot.com/2012/05/kext-extraction-with-parse.html
https://github.com/revault/rebol-wiki/wiki/Parse-Project

http://mww.colellachiara.com/soft/Misc/parse-rep.html - proposals for improvements of
parse

< Previous topic Next topic >

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://www.red-by-example.org/parse.html
http://www.red-lang.org/2013/11/041-introducing-parse.html
http://www.michaelsydenham.com/reds-parse-dialect/
https://github.com/red/red/issues/3478
http://www.red-lang.org/2013/11/041-introducing-parse.html
http://video.respectech.com:8080/tutorial/r3/index.r3?cgi=mFMC83aTX7qDfFMIHxMSXZ6uZy8RypQqSOYqBFFngW92yOXtdITv2fs WBzVuoFObOSj1kFEEWeC8GeYQhWP
http://www.rebol.com/docs/core23/rebolcore-15.html
http://www.codeconscious.com/rebol/parse-tutorial.html
http://www.codeconscious.com/rebol/r2-to-r3-parse.html
http://www.rebol.com/r3/docs/concepts/parsing-summary.html
http://www.rebol.com/r3/docs/functions/parse.html
http://blog.hostilefork.com/why-rebol-red-parse-cool/
https://en.wikibooks.org/wiki/Rebol_Programming/Language_Features/Parse/Parse_expressions
https://en.wikibooks.org/wiki/Rebol_Programming/Language_Features/Parse/Parse_expressions
http://rebol2.blogspot.com/2012/05/text-extraction-with-parse.html
https://github.com/revault/rebol-wiki/wiki/Parse-Project
http://www.colellachiara.com/soft/Misc/parse-rep.html

Helpin' Red

Easily create HTML Help documents

Draw

Very good information also in red-by-example. and in the Red documentation.

Draw is used to create 2D graphics. Like PARSE and VID, Draw is a DSL, that is, a
dialect of Red, a language within a language.

To use draw, you must also use VID, so every script that uses draw must have a view block,
and within the view block, one must have a base face to draw on. The following examples
show all the basic shapes of draw.

Remembering:

MNote:
Red’s coordinate system

33x22
(%xY) X

Y

eaw line

Red [needs: view|
view [

base draw [l ine 60x10 10x60]
]

" =

Red [needs: view|
view [
base draw [line 60x10 10x60 60x60 60x40]

]

265 /349

https://www.helpndoc.com/feature-tour
http://www.red-by-example.org/draw.html
https://doc.red-lang.org/en/draw.html

Helpin' Red

The importance of naive COMPOSE for DRAW

Suppose you want to perform evaluations on DRAW arguments, like:

Red [needs: view
view [

base draw [line 60x10 (2 * 10x30)]
]

This is a very common situation, but Red will give you an error because DRAW does not
evaluate expressions.
So you need to use compose, most commonly with the refinement /deep , to achieve that.

Red [needs: view

Vi ew conpose/ deep |
base draw [line 60x10 (2 * 10x30)]
]

12| e

DRAW is part of the face object!

Open the Red GUI console ant type view/no-wait [a: base draw [line 60x10 10x60]] .
Thentype ? a. You will see a lot of data about the object a, among them you will see:

>> view/no-wait [a: base draw [line 60x10 10x60]]
== make object! [

type: 'window

offset: 636x360

size: 130x100

text: "Red: untitled"

>> ? a

A is an object! with the following words and values:
type word! base
<oul>

266 /349

Helpin' Red

<ovd>
draw block! length: 3 [line 60x10 10x60]
on-change* function! [word old new /local srs same-pane?
f saved]
on-deep-change* function! [owner word target action new index
part]

So you may access the draw block using path!:

>> a/draw
== [line 60x10 10x60]

This is very important for animation - programmatic drawing.

seam triangle

Red [needs: view
view [

base draw [triangle 10x10 50x50 50x10]
]

12| e

seaw D OX

Red [needs: view
view [
base draw [box 10x10 50x50]

with arounded corner:

Red [needs: view
view [
base draw [box 10x10 50x50 10]

267 / 349

Helpin' Red

smam PoOlygon

Red [needs: view
view [
base draw [pol ygon 10x10 30x10 40x20 30x30 10x50]

peaw Circle
Red [needs: view
view [
base draw [circle 40x40 30]

ellipse mode:
Red [needs: view|

view [
base draw [circle 40x40 30 15]

268 /349

Helpin' Red

smam ellipse

The ellipse is drawn within an imaginary rectangle. The arguments are the box top-left point
and the other corner's point

Red [needs: view
view [

base draw [el |ipse 10x10 20x50]
]

12| e

BRAW AlC

Draws the arc of a circle from the provided center (pair!) and radius (also a pair!) values.
The arc is defined by two angles values in degrees. An optional closed keyword can be
used to draw a closed arc using two lines coming from the center point.

Red [needs: view|

view [
base draw [arc 40x40 20x20 45 180]
base draw [arc 40x40 30x30 0 290]

base draw [arc 40x40 20x40 0 270]
base draw [arc 40x40 20x20 45 180 cl osed]

E Red: untitled

269 /349

Helpin' Red

BRAW Curve

Draws a Bezier curve from 3 or 4 points:
e 3 points: 2 end points, 1 control point.
e 4 points: 2 end points, 2 control points.
The 4 points option allow more complex curves to be created.

Red [needs: view|
view [

base draw [circle 10x60 1 circle 25x15 1 circle 40x15 1 circle
70x60 1]
base draw [curve 10x60 25x15 40x15 70x60]

base draw [curve 10x60 25x15 70x60]

E Red: untitled

Bezier curves

Bezier curves have a start point, an endpoint and one or two control points. If it has one
control point its a quadratic Bezier, if it has two control points its a cubic Bezier.

The following animated gifs were made by Phil Tregoning and released to public domain
(thank you) at Wikimedia Commons. If you can't see the animation, check the page on

Wikipedia about Bezier curves :
Quadratic Bezier:

P,

[t=0 of,

You should also check out this great interactive demonstration.

270/ 349

https://en.wikipedia.org/wiki/B�zier_curve
https://en.wikipedia.org/wiki/B�zier_curve
http://blogs.sitepointstatic.com/examples/tech/svg-curves/quadratic-curve.html

Helpin' Red

Cubic Bezier:
== aP,
P t=0 oP,
pmw Spline

Constructs a curve that follows a sequence of points.

Red [needs: view|

view [
base draw [circle 10x60 1 circle 25x15 1 circle 40x15 1 circle
70x60 1]
base draw [spline 10x60 25x15 40x15 70x60]
base draw [spline 10x60 25x15 40x15 70x60 cl osed]
]
Y Red: untitled - X

BEAW IMage

Paints an image using the provided information for position and width.

Red [needs: view|

picture: |load %snal | bal | oon. | peg
view [
base draw [image picture]
base draw [inage picture 30x30]
base draw [inage picture 30x30 70x70]
base draw [inage picture crop 30x30 60x60]
base draw [inage picture 5x5 crop 30x30 60x60]

271/ 349

Helpin' Red

A Red: untitled — X

There is also a color command (key color to be made transparent) and a border
command, but | couldn't make those work yet.

e text

Red [needs: view|
view [

base draw [text 40x40 "hell 0"]
]

12| X

pm font

?

paw anti-alias

Anti-aliasing gives nicer visual rendering, but degrades performance. It can be set on
(default) or off.

Red [needs: view
view [
base draw [
anti-alias off
text 10x5 "No"
text 10x15 "anti-alias"
circle 40x50 20
el lipse 10x60 60x15

272 1 349

Helpin' Red

]

base draw |
anti-alias on
text 10x5 "Wth"
text 10x15 "anti-alias"
circle 40x50 20
el lipse 10x60 60x15

E!Ra“ — o

pam Shape

See the Shape sub-dialect page.

< Previous topic Next topic >

2731349

Helpin' Red

Easily create PDF Help documents

DRAW - Line properties

peaw [ine-width

Red [needs: view
view [
base draw |

line-width 1
line 10x10 70x10
line-width 5
line 10x30 70x30
line-width 20
Iine 10x60 70x60

seaw line-join
May be miter, round , bevel or miter-bevel*. miter is default

Red [needs: view
view [
base draw |
line-width 15
line-join mter
|ine 60x10 30x60 60x60

base draw |
line-width 15
|ine-join round
|ine 60x10 30x60 60x60

base draw |
line-width 15
line-join bevel
Iine 60x10 30x60 60x60

274 | 349

https://www.helpndoc.com/feature-tour

Helpin' Red

A Red: untitled — x

* | could not make the miter-bevel option work.

seaw |ine-cap
Defines the line ending's cap mode. May be flat (default) square or round.

Red [needs: view|
view [
base draw [

line-wdth 15
line-cap flat
'ine 10x20 70x20
| i ne-cap square
I'ine 10x40 70x40
| ine-cap round
I'ine 10x60 70x60

base draw [
line-wdth 15
line-cap flat
Iine 60x10 30x60 60x60

base draw [
line-wdth 15
| i ne-cap square
Iine 60x10 30x60 60x60

base draw [
line-wdth 15
| ine-cap round
Iine 60x10 30x60 60x60

A Red: untitled — x

275/ 349

Helpin' Red

< Previous topic Next topic >

276 /1 349

Helpin' Red

Full-featured Kindle eBooks generator

DRAW - Color, gradients and patterns

AW pen <color>

Red [needs: view|
view [
base draw [
pen yel | ow
triangl e 10x10 50x50 50x10
pen 255.10. 10
circle 40x40 20

seaw fill-pen <color>

Red [needs: view
view [
base draw [
fill-pen yellow
triangl e 10x10 50x50 50x10
fill-pen 255.10.10
circle 40x40 20

Turning off the pen and the fill-pen:

Red [needs: view

277 1349

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

view [
base draw |
pen off

Helpin' Red

fill-pen yellow
triangle 10x10 50x50 50x10

fill-pen off

circle 40x40 20

g linear - linear color gradient

Pen

From Red's official documentation (with eventual minor changes):

Syntax

<pen/fill-pen> linear <colorl> <offset> ... <colorN> <offset> <start>

<end> <spread>

<colorl/N>
<offset>
<start>
<end>
<spread>

Description

: list of colors for the gradient (tuple! word!).
: (optional) offset of gradient color (float!).

: (optional) starting point (pair!).

: (optional unless <start>) ending point (pair!).
: (optional) spread method (word!).

Sets a linear gradient to be used for drawing operations. The following values are
accepted for the spread method: pad, repeat, reflect (currently pad is same
as repeat for Windows platform).

When used, the start/end points define a line where the gradient paints along. If they
are not used, the gradient will be paint along a horizontal line inside the shape currently

drawing.

Red [needs: view
view [
base draw |

pen linear blue green red 0x0 80x80

line-width 5

|'ine 0xO 80x80

base draw |

pen |inear blue green 0x0 40x40 pad

line-width 5

| ine 0x0O 80x80

278 1349

https://doc.red-lang.org/en/draw.html

Helpin' Red

base draw |

pen linear blue green 0x0 40x40 refl ect
line-width 5

Iine OxO 80x80

A Red: untitled — x

Fill-pen

Red [needs: view
view [
base draw [
fill-pen linear blue green red 18x18 62x62
circle 40x40 30

s radial - radial color gradient

From Red's official documentation (with eventual minor changes):

Syntax

<pen/fill-pen> radial <colorl> <offset> ... <colorN> <offset>
<center> <radius> <focal> <spread>

<colorl/N> : list of colors for the gradient (tuple! word!).
<offset> : (optional) offset of gradient color (float!).

<center> : (optional) center point (pair!).

<radius> : (optional unless <center>) radius of the circle to paint
along (integer! float!).

<focal> : (optional) focal point (pair!).

<spread> : (optional) spread method (word!).

Description

279/ 349

https://doc.red-lang.org/en/draw.html

Helpin' Red

Sets a radial gradient to be used for drawing operations. The following values are
accepted for the spread method: pad, repeat, reflect (currently pad is same
as repeat for Windows platform).

The radial gradient will be painted from focal point to the edge of a circle defined by
center point and radius. The start color will be painted in focal point and the end color
will be painted in the edge of the circle.

Pen
Red [needs: view|
view [
base draw [
pen radial blue green red 40x40 40
l'ine-width 20
I'ine 10x30 70x30
]
]
A X
Fill-pen

Red [needs: view|
view [
base draw [
fill-pen radial blue green red 40x40 40

triangle 20x70 60x70 40x20

s diamond - diamond color gradient

From Red's official documentation (with eventual minor changes):

Syntax

280/ 349

https://doc.red-lang.org/en/draw.html

Helpin' Red

<pen/fill-pen> diamond <colorl> <offset> ... <colorN> <offset> <upper>
<lower> <focal> <spread>

<colorl/N> : list of colors for the gradient (tuple! word!).
<offset> : (optional) offset of gradient color (float!).
<upper> : (optional) upper corner of a rectangle. (pair!).
<lower> : (optional unless <upper>) lower corner of a rectangle
(pair!).

<focal> : (optional) focal point (pair!).

<spread> : (optional) spread method (word!).

Description

Sets a diamond-shaped gradient to be used for drawing operations. The following values
are accepted for the spread method: pad, repeat, reflect (currently pad is same
as repeat for Windows platform).

The diamond gradient will be painted from focal point to the edge of a rectangle defined
by upper and lower. The start color will be painted in focal point and the end color will
be painted in the edge of the diamond.

Red [needs: view|
view [
base draw [
fill-pen dianond blue green red
circle 40x40 35

base draw |
fill-pen dianond blue green red 10x10 50x50

circle 40x40 35

base draw |
fill-pen dianond blue green red 10x10 50x50 30x48

circle 40x40 35

base draw |
pen di anond blue green red 10x10 50x50 30x48

line-width 10
|'ine 10x10 70x70

E Red: untitled —

281 /349

Helpin' Red

B bitmap - bitmap fill

From Red's official documentation (with eventual minor changes):

Syntax

<pen/fill-pen> bitmap <image> <start> <end> <mode>

<image> : image used for tiling (image!).

<start> : (optional) upper corner for crop section within image
(pair!).

<end> : (optional) lower corner for crop section within image
(pair!).

<mode> : (optional) tile mode (word!).

Description

Sets an image as pattern to be used for filling operations. The following values are
accepted for the tile mode: tile (default), flip-x, flip-y, flip-xy, clamp

Starting default point is Ox0 and ending point is image’s size.

The sample bitmap loaded for the following example is:

Red [needs: view|
nyi mage: | oad %asprite. bnmp
view [
base draw [
fill-pen bitmap nyinage tile
box 0x0 79x79

base draw [
fill-pen bitmap nmyimage flip-x
box 0x0 79x79

base draw [
fill-pen bitmap nyinmage flip-y
box 0x0 79x79

base draw [
fill-pen bitmap nyimage flip-xy
box 0x0 79x79

base draw [
fill-pen bitmap nyi nage cl anp
box 0Ox0 79x79

base draw [

pen bitmap nyi mage
[ine-width 15

l'ine 0xO 80x80

282 /349

https://doc.red-lang.org/en/draw.html

Helpin' Red

A Red: untitled — *

DO DD
DD

pmaw pattern - draw pattern fill

From Red's official documentation (with eventual minor changes):

Syntax

<pen-fill-pen> pattern <size> <start> <end> <mode> [<commands>]

<size> : size of the internal image where <commands> will be drawn
(pair!).

<start> : (optional) upper corner for crop section within internal
image (pair!).

<end> : (optional) lower corner for crop section within internal image
(pair!).

<mode> : (optional) tile mode (word!).

<commands> : block of Draw commands to define the pattern.

Description

Sets a custom shape as pattern to be used for filling operations. The following values
are accepted for the tile mode: tile (default), flip-x, flip-y, flip-xy, clamp.

Starting default point is 0x0 and ending point is <size>.

Red [needs: view
view [

base draw |
fill-pen pattern 10x10 |
circle 5x5 4
I'ine 3x3 7x7

]
box 0x0 79x79

]

base draw |
pen pattern 10x10 |
circle 5x5 4
I'ine 3x3 7x7
]
line-width 15
line OxO 79x79

283 /349

https://doc.red-lang.org/en/draw.html

Helpin' Red

< Previous topic Next topic >

284/ 349

DRAW -

Helpin' Red

Easily create HTML Help documents

2D transforms

BRaw rotate

Example of a rotation of 30° centered at OxO:

From Red's official documentation (with eventual minor changes):

Syntax

rotate <angle> <center> [<commands>]
rotate 'pen <angle> rotate 'fill-pen <angle>

<angle> : the angle in degrees (integer! float!).
<center> : (optional) center of rotation (pair!).
<commands> : (optional) Draw dialect commands.

Description

Sets the clockwise rotation about a given point, in degrees. If optional center is not
supplied, the rotate is about the origin of the current user coordinate system. Negative
numbers can be used for counter-clockwise rotation. When a block is provided as last
argument, the rotation will be applied only to the commands in that block.

When the 'pen or 'fill-pen lit-words are used, the rotation is applied respectively to
the current pen or current fill-pen.

Red [needs: view

view [

base draw [

pen red
box 20x20 50x40
rotate 30 40x40
pen yel | ow

285 /349

https://www.helpndoc.com/feature-tour
https://doc.red-lang.org/en/draw.html

Helpin' Red

box 20x20 50x40
]

AW Scale

Example of a 1.2 scale increase in both x and y axis:

From Red's official documentation (with eventual minor changes):

Syntax

scale <scale-x> <scale-y> [<commands>]
scale 'pen <scale-x> <scale-y>
scale 'fill-pen <scale-x> <scale-y>

<scale-x> : the scale amount in X (number!).
<scale-y> : the scale amount in Y (number!).
<commands> : (optional) Draw dialect commands.

Description

Sets the scale amounts. The values given are multipliers; use values greater than one
to increase the scale; use values less than one to decrease it. When a block is
provided as last argument, the scaling will be applied only to the commands in that
block.

When the 'pen or 'fill-pen lit-words are used, the scaling is applied respectively to
the current pen or current fill-pen.

Red [needs: view

view [

base draw |

pen red
box 20x20 50x40
scale 1.3 1.3
pen yel | ow

286 / 349

https://doc.red-lang.org/en/draw.html

Helpin' Red

box 20x20 50x40
]

e translate

Example of a translation in the x and y axis:

Translates the entire coordinate system.

From Red's official documentation (with eventual minor changes):

Syntax

translate <offset> [<commands>]
translate 'pen <offset>
translate 'fill-pen <offset>

<offset> : the translation amounts (pair!).
<commands> : (optional) Draw dialect commands.
Description

Sets the origin for drawing commands. Multiple translate commands will have a
cumulative effect. When a block is provided as last argument, the translation will be
applied only to the commands in that block.

When the 'pen or 'fill-pen lit-words are used, the translation is applied respectively
to the current pen or current fill-pen.

Red [needs: view

base draw [

pen red
box 20x20 50x40
transl ate 25x25
pen yel | ow

287 /1349

https://doc.red-lang.org/en/draw.html

Helpin' Red

box 20x20 50x40
]

AW Skew

A skewed coordinate system is when the axis are not orthogonal.

The skew command tilts the x axis and/or the y axis by a given number of degrees.

From Red's official documentation (with eventual minor changes):

Syntax

skew <skew-x> <skew-y> [<commands>]
skew 'pen <skew-x> <skew-y>
skew 'fill-pen <skew-x> <skew-y>

<skew-x> : skew along the x-axis in degrees (integer! float!).
<skew-y> : (optional) skew along the y-axis in degrees (integer!
float!).

<commands> : (optional) Draw dialect commands.

Description

Sets a coordinate system skewed from the original by the given number of degrees.
If <skew-y> is not provided, it is assumed to be zero. When a block is provided as last
argument, the skewing will be applied only to the commands in that block.

When the 'pen or 'fill-pen lit-words are used, the skewing is applied respectively to
the current pen or current fill-pen.

288 /349

https://doc.red-lang.org/en/draw.html

Red [needs: view|
view [
base draw |
pen yel | ow
i ne 30x30 30x60 25x55
i ne 30x60 35x55
i ne 30x30 60x30 55x35
i ne 60x30 55x25
pen bl ack
box 0x0 80x80
i ne 0x20 80x20 0x20 0x40 80x40 80x60 0x60
i ne 20x0 20x80 20x0 40x0 40x80 60x80 60x0
text 45x5 " X'
text 10x40 "Y"

]

base draw |

skew 20 0

pen yel | ow

i ne 30x30 30x60 25x55

i ne 30x60 35x55

i ne 30x30 60x30 55x35

i ne 60x30 55x25

pen bl ack

box 0x0 80x80

i ne 0x20 80x20 0x20 0x40 80x40 80x60 0x60
i ne 20x0 20x80 20x0 40x0 40x80 60x80 60x0
text 45x5 " X'

text 10x40 "Y"

]

base draw |

skew 0 20

pen yel | ow

i ne 30x30 30x60 25x55

i ne 30x60 35x55

i ne 30x30 60x30 55x35

i ne 60x30 55x25

pen bl ack

box 0x0 80x80

i ne 0x20 80x20 0x20 0x40 80x40 80x60 0x60
i ne 20x0 20x80 20x0 40x0 40x80 60x80 60x0
text 45x5 " X'

text 10x40 "Y"

]

base draw |

skew 20 20

pen yel | ow

i ne 30x30 30x60 25x55

i ne 30x60 35x55

i ne 30x30 60x30 55x35

i ne 60x30 55x25

pen bl ack

box 0x0 80x80

i ne 0x20 80x20 0x20 0x40 80x40 80x60 0x60
i ne 20x0 20x80 20x0 40x0 40x80 60x80 60x0
text 45x5 " X'

text 10x40 "Y"

Helpin' Red

A Red: untitled — x

e transform

Performs translation, rotation and scaling on a single command. The transform below
uses 0x0 as anchor point (reference point), rotates 20°, scales to 1.5 in both axis and
translates 20 units both in the x and y axis:

Red [needs: view|
view [
base 120x120 draw |
pen red
box 20x20 50x40
transformO0x0 20 1.5 1.5 20x20
pen yel | ow
box 20x20 50x40

If a block is provided as last argument, these transformations are applied only to the
commands in that block.

Red [needs: view|
view [
base 120x120 draw [
pen red
box 20x20 50x40
transformOx0 20 1.5 1.5 20x20 |
pen yel | ow
box 20x20 50x40
]
pen bl ue
box 25x25 55x45

]

290/ 349

Helpin' Red

peaw Clip

From Red's official documentation (with eventual minor changes):

Syntax

transform <center> <angle> <scale-x> <scale-y> <translation>
[<commands>]

transform 'pen <center> <angle> <scale-x> <scale-y> <translation>
transform 'fill-pen <center> <angle> <scale-x> <scale-y>
<translation>

<center> : (optional) center of rotation (pair!).

<angle> : the rotation angle in degrees (integer! float!).
<scale-x> : the scale amount in X (number!).

<scale-y> : the scale amount in Y (number!).

<translation> : the translation amounts (pair!).
<commands> : (optional) Draw dialect commands.

Description

Sets a transformation such as translation, scaling, and rotation. When a block is
provided as last argument, the transformation will be applied only to the commands
in that block.

When the 'pen or 'fill-pen lit-words are used, the transformation is applied
respectively to the current pen or current fill-pen.

Limits the drawing area to a rectangle.

Red [needs:
view [

Vi ew]

291/ 349

https://doc.red-lang.org/en/draw.html

Helpin' Red

base

draw [
pen bl ack
fill-pen red circle 15x40 30
fill-pen blue circle 30x40 30
fill-pen yellow circle 45x40 30
fill-pen cyan circle 60x40 30
fill-pen purple circle 75x40 30

]

base

draw [

clip 10x40 60x70

pen bl ack

fill-pen red circle 15x40 30
fill-pen blue circle 30x40 30
fill-pen yellow circle 45x40 30
fill-pen cyan circle 60x40 30
fill-pen purple circle 75x40 30

E’Ra“ — o

If a block is provided as last argument, the clipping is applied only to the commands in that
block, i.e. after the block, the whole area becomes canvas again.

From Red's official documentation (with eventual minor changes):

Syntax

clip <start> <end> <mode> [<commands>]
clip [<shape>] <mode> [<commands>]

<start> : top-left corner point of clipping area (pair!)

<end> : bottom-right corner point of clipping area (pair!)
<mode> : (optional) merging mode between clipped regions (word!)
<commands> : (optional) Draw dialect commands.

<shape> : Shape dialect commands.

Description
Defines a clipping rectangular region defined with two points (start and end) or an
arbitrarily shaped region defined by a block of Shape sub-dialect commands. Such

clipping applies to all subsequent Draw commands. When a block is provided as last
argument, the clipping will be applied only to the commands in that block.

Additionally, the combining mode between a new clipping region and the previous one,
can be set to one of the following:

= preplace (default)

292 /349

https://doc.red-lang.org/en/draw.html

intersect
union

xor

exclude

About those modes, | could only figure out replace and exclude. You may try the others.

Red [needs: view

view [

base

draw [
line-width 5
pen red |ine 0x70 10x80 80x80 80x70 10x0
pen blue |Iine 0x60 20x80 80x80 80x60 20x0
pen yel low | i ne 0x50 30x80 80x80 80x50 30x0
pen cyan |ine 0x40 40x80 80x80 80x40 40x0
pen green line 0x30 50x80 80x80 80x30 50x0
pen purple [ine 0x20 60x80 80x80 80x20 60x0
pen gold line Ox10 70x80 80x80 80x10 70x0
pen pink [ine Ox0O 80x80 80x80
clip 10x40 60x70 repl ace
pen red line Ox10 10x0 80x0 80x10 10x80
pen blue |ine 0x20 20x0 80x0 80x20 20x80
pen yellow | ine 0x30 30x0 80x0 80x30 30x80
pen cyan |ine 0x40 40x0 80x0 80x40 40x80
pen green |line 0x50 50x0 80x0 80x50 50x80
pen purple |ine 0x60 60x0 80x0 80x60 60x80
pen gold [ine Ox70 70x0 80x0 80x70 70x80
pen pink [ine 0x80 80x0 80x80

]

base

draw [
line-width 5
pen red |ine 0x70 10x80 80x80 80x70 10x0
pen blue |Iine 0x60 20x80 80x80 80x60 20x0
pen yel low | i ne 0x50 30x80 80x80 80x50 30x0
pen cyan |ine 0x40 40x80 80x80 80x40 40x0
pen green |line 0x30 50x80 80x80 80x30 50x0
pen purple [ine 0x20 60x80 80x80 80x20 60x0
pen gold line Ox10 70x80 80x80 80x10 70x0
pen pink [ine Ox0O 80x80 80x80

clip 10x40 60x70 excl ude

pen
pen
pen
pen
pen
pen
pen
pen

red Iine Ox10 10x0 80x0 80x10 10x80
blue |Iine 0x20 20x0 80x0 80x20 20x80
yel l ow |ine 0x30 30x0 80x0 80x30 30x80
cyan |ine 0x40 40x0 80x0 80x40 40x80
green |ine 0x50 50x0 80x0 80x50 50x80
purple line 0x60 60x0 80x0 80x60 60x80
gold line Ox70 70x0 80x0 80x70 70x80
pink |ine 0x80 80x0 80x80

Helpin' Red

Or using animage:

Red [needs: view|
picture: |load Y%snal | bal | oon. j peg

view [

base

draw [
line-width 5
pen red |ine 0x70 10x80 80x80 80x70 10x0
pen blue |ine 0x60 20x80 80x80 80x60 20x0
pen yel low | ine 0x50 30x80 80x80 80x50 30x0
pen cyan |ine 0x40 40x80 80x80 80x40 40x0
pen green |ine 0x30 50x80 80x80 80x30 50x0
pen purple line 0x20 60x80 80x80 80x20 60x0
pen gold |line 0x10 70x80 80x80 80x10 70x0
pen pink |ine Ox0 80x80 80x80
clip 10x40 60x70 repl ace
i mage picture

]

base

draw [
line-width 5
pen red |ine 0x70 10x80 80x80 80x70 10x0
pen blue |ine 0x60 20x80 80x80 80x60 20x0
pen yel low | ine 0x50 30x80 80x80 80x50 30x0
pen cyan |ine 0x40 40x80 80x80 80x40 40x0
pen green |ine 0x30 50x80 80x80 80x30 50x0
pen purple line 0x20 60x80 80x80 80x20 60x0
pen gold |line 0x10 70x80 80x80 80x10 70x0
pen pink |ine Ox0 80x80 80x80

clip 10x40 60x70 excl ude

i mage picture

294 | 349

Helpin' Red

295/ 349

Next topic >

Helpin' Red

Full-featured EBook editor

DRAW - Shape sub-dialect

The shape sub-dialect allows you to create shapes (drawings) as blocks.
Some aspects of it remind me of "turtle-graphics". You can move your pen without drawing
and coordinates can be absolute (relative to the face) or relative (relative to last position).

Shape sub-dialect also "closes" the shapes for you, allowing you to use fill-pen to add
colors or patterns.

Youmay use fill-pen, pen, line-width, line-join and line-cap as commands inthe
shape block, but only the last command will be used for the entire shape.

The shape sub-dialect is based on SVG graphics. | found the following links to be helpful in
understanding some of the concepts:

https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
http :/Amww.w3.0rg/TR/SVG11/paths.html

@ line

The most basic example:
Red [needs: view|
myshape: [line 10x10 70x70]
Vi ew conpose/ deep/only [
base draw |

shape (myshape)
]

Notice the compose/deep/only and the parentheses around the shape name. As far as |
know, you must use those when working with shapes.

296 / 349

https://www.helpndoc.com/create-epub-ebooks
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
http://www.w3.org/TR/SVG11/paths.html

Helpin' Red

Automatic closing

In the example below, only two lines were actually drawn. | added fill-pen to illustrate it
better:

Red [needs: view|

myshape: |
line 10x70 40x10 70x70
]

vi ew conpose/ deep/only [base draw [fill-pen blue shape (nmyshape)]]

" ®

@ move

The most basic example:
Red [needs: view|
myshape: |
I ine 10x10 70x70

move 10x70
|'ine 10x10

]

vi ew conpose/ deep/ only [base draw [shape (nyshape)]]

2| ®

FOxy0

relative positions

Coordinates become relative if you add an apostrophe (') before the command:
Red [needs: view|

myshape: |
|'i ne 10x40 40x40
'nmove 0x-10

297 / 349

Helpin' Red

"I'ine 20x0
]

vi ew conpose/ deep/only [base draw [shape (nyshape)]]

12| X

® hline and @ vline
Draws a horizontal or a vertical line from current pen position.

Red [needs: view

myshape: |
nmove 10x10
hline 30
vline 30
"hline 30

"vliine 30
"hline -20

]

vi ew conpose/ deep/ only [base draw [shape (nyshape)]]

" e

@ arc

From Red's official documentation (with eventual minor changes):

Syntax

arc <end> <radius-x> <radius-y> <angle> sweep large (absolute)
'arc <end> <radius-x> <radius-y> <angle> sweep large (relative)

298 /349

https://doc.red-lang.org/en/draw.html

<end> : arc's end point (pair!).

<radius-x> : radius of the circle along x axis (integer! float!).
<radius-y> : radius of the circle along y axis (integer! float!).
<angle> : angle between the starting and ending points of the arc
in degrees (integer! float!).

sweep : (optional) draw the arc in the positive angle direction.
large : (optional) produces an inflated arc (goes with 'sweep
option).

Description

Draws the arc of a circle between the current pen position and the end point, using
radius values. The arc is defined by one angle value.

Here is an explanation about how arc works. Since you define your line (two points) and
your ellipse (x-radius, y-radius and angle), there are only two positions for the ellipse that
make your line a chord to it. The options sweep, large and sweep large define which arc of
these ellipses will show in your drawing. Notice that in the illustration below, the angle of the
ellipse is zero.

Your line l

sweep large

In the arc definition you only inform the arc's end position. That is because the start position
is the current pen position. So, if arc is your first command in a shape, you must first move
to the position you want to start at.

Red [needs: view

myshape_1: |
move 35x50
arc 55x70 15 30 O
]
myshape_2: |
move 35x50
arc 55x70 15 30 0 | arge sweep
]
nmyshape_3: |
move 35x50
arc 55x70 15 30 0 sweep

Helpin' Red

]
nmyshape_4: |
move 35x50
arc 55x70 15 30 O large
]
vi ew conpose/ deep/only |
base 100x120 draw [fill-pen blue shape (mnmyshape_1)]
base 100x120 draw [fill-pen blue shape (mnmyshape_2)]
base 100x120 draw [fill-pen blue shape (mnmyshape_3)]
base 100x120 draw [fill-pen blue shape (mnmyshape_4)]

E Red: untitled

With an angle:

Red [needs: view|

nmyshape_1: |
move 35x50
arc 55x70 15 30 30
]
nyshape_2: |
move 35x50
arc 55x70 15 30 30 | arge sweep

]

vi ew conpose/ deep/only [
base 100x120 draw [fill-pen blue shape (nyshape_1)]
base 100x120 draw [fill-pen blue shape (nyshape_2)]

Y Red: untitled — X

A circle:

Red [needs: view

300 / 349

Helpin' Red

myshape_1: |
nmove 56x40

arc 56x41 16 16 0 | arge
]
vi ew conpose/ deep/only [base draw [fill-pen blue shape (nyshape_1)]]
" X

@® gcurve

From Red's official documentation (with eventual minor changes):
Syntax

gcurve <point> <point> ... (absolute)

'gcurve <point> <point> ... (relative)

<point> : coordinates of a point (pair!).

Description

Draws a quadratic Bezier curve from a sequence of points, starting from the current pen
position. At least 2 points are required to produce a cune (the first point is the implicit
starting point).

Draw a quadratic Bezier curve from a sequence of 3 points. The following script draws two
gcurves using <start-point> <control-point > <end-point/start-point> <control-point > <end-
point>. Allows absolute or relative (for relative, use 'qcurve) coordinates.

Red [needs: view

myshape

[

nove 5x40
qcurve 20x20 40x76 60x20 76x40

]

vi ew conpose/ deep/only [
base draw [

pen bl ue
circle 5x40 2
circle 40x76 2
circle 76x40 2
pen green
circle 20x20 2
circle 60x20 2
pen yel | ow
shape (myshape)
]

301 /349

https://doc.red-lang.org/en/draw.html

Helpin' Red

| added the approximate location of the fixed-points (blue) and the control-points (green) in
the image bellow. They are not generated by the program, | edited the image.

@ curve

From Red's official documentation (with eventual minor changes):

Syntax
curve <point> <point> <point> ... (absolute)
"curve <point> <point> <point> ... (relative)

<point> : coordinates of a point (pair!).

Description

Draws a cubic Bezier curve from a sequence of points, starting from the current pen
position. At least 3 points are required to produce a cune (the first point is the implicit
starting point).

Draws a cubic Bezier curve using <start-point (current pen position)> <control-pointl
(argument)> <control-point2 (argument)> <end-point (argument)> . Allows absolute or
relative (for relative, use 'curve) coordinates.

Red [needs: view|

nmyshape_1: [
move 10x70
curve 30x20 50x20 70x70

]

vi ew conpose/ deep/only [base draw [pen yell ow shape (myshape_1)]]

| added the approximate location of the fixed-points (blue) and the control-points (green) in
the images bellow. They are not generated by the program, | edited them.

302 /349

https://doc.red-lang.org/en/draw.html

Helpin' Red

You may add more points to the curve command, they will create a new independent curve:

Red [needs: view|
myshape_1: |
nmove 10x70
curve 30x20
50x20
70x70
90x40
110x100
130x70
]
vi ew conpose/ deep/ only [base 150x100 draw [pen yel |l ow
shape(nyshape_1)]]

ABr - X

100

@ geury

Syntax

gcurv <point> (absolute)
'gcurv <point> (relative)

<point> : coordinates of the ending point (pair!).

qcurv draws a smooth quadratic Bezier from the current pen position to the specified
point.

You don't have to provide the control-point between start-point and end-point, qcurv
creates this control-points as a reflection of the last control point given in the shape block,
S0, you must have a command that uses a control-point before using gcurv.

Red [needs: view|

303 /349

Helpin' Red

myshape_1: |
move 30x60
qcurve 50x30 70x60
gcurv 110x60
]
vi ew conpose/ deep/only |
base 300x240 draw [
scale 2 2
pen yel | ow
shape (myshape_1)
]

Y Red: untitled - ot
150

N\

: qcury

120

As of april 2018, qcurv only works with one endpoint as argument.

@ curv

Draws a smooth cubic Bezier curve from a sequence of points.

Just like gcurv, curv creates control-points reflected relative to the last control-point in the

shape block. But since cubic Beziers require 2 control-points, you must provide the second
for each segment. This second control-point will be reflected as the first control-point of the
next segment.

From Red's official documentation (with eventual minor changes):

Syntax
curv <point> <point> ... (absolute)
‘curv <point> <point> ... (relative)

304 /349

https://doc.red-lang.org/en/draw.html

Helpin' Red

<point> : coordinates of a point (pair!).

Description

Draws a smooth cubic Bezier curve from a sequence of points, starting from the current
pen position. At least 2 points are required to produce a cune (the first point is the
implicit starting point).

"The first control point is assumed to be the reflection of the second control point on
the previous command relative to the current point. (If there is no previous curnve
command, the first control point is the current point.)"

So, curv draws a cubic Bezier using <current pen position start-point ><automatically
created reflected control-pointl><control-point2> <end-point>.

So, the arguments you actually pass to curv are only: <control-point2> <end-point>[...]

Red [needs: view|

nmyshape_1: |
nmove 30x60
qcurve 50x30 70x60
curv 100x40 110x60
]
Vi ew conpose/ deep/only |
base 300x240 draw [
scale 2 2
pen yel | ow
shape (myshape_1)
]

Y Red: untitled - X

120

305 /349

Helpin' Red

curv may use many consecutive control-points and points:

Red [needs: view
second control - poi nt poi nt

nmyshape_1: |
move 10x40
qcurve 30x10 50x40
curv 70x10 90x40 110x10 130x40 150x10 170x40
move 10x40

]
vi ew conpose/ deep/ only [base 200x80 draw [pen yel |l ow shape (myshape_1)]

]

E Red: unti... — o

< Previous topic Next topic >

306 / 349

Easily create Help documents

DRAW - Programmatic drawing and
Animation

Executing drawings using Red programming tools (loops, math, branching etc.) requires
some structuring of the script. | found the following to be a rule-of-thumb structure:

Red [needs: view]

dr aw- changi ng: function []

vi ew conpose/ deep/only |
face focus
drawf conmands (argunents)]
on-event [draw- changi ng]

]

dr aw- changi ng - This are the functions to be called from an event to do calculations and
then change the "draw" field of the face's object. You must change this field from here
because you can't change it from inside the dialect block.

face focus - Some events (as key) seem to only be generated with focus on graphic
faces like base or box, so beware.

dr aw - Executes the draw dialect. Any calculated argument (variable) should be within
parenthesis to be evaluated by compose/deep/only.

on- event - Calls the appropriate draw-changing function considering the type of event.

Very simple animation:
Red [needs 'view
position: 0x0

updat e- canvas: func [] [
position: position + 1x1
canvas/draw. reduce ['circle position 5]

]

view [
canvas: base 100x100 rate 25
on-time [update-canvas]

https://www.helpndoc.com/feature-tour

Helpin' Red

rvesl

The code explained:
Red [needs 'view

{ "position" is the center of the circle
that will be noved. Here it's at the top left corner}

position: 0x0

{ the "update-canvas" function does all the
necessary processing and "passes" the draw
routine to the draw field of the canvas

object. Notice three things in the code bel ow
1- Yes, drawis a field of an object!

2- You nust use "reduce" to send the

current value of position

3- There nust be an apostrophe before

"circle". "circle" is a keyword of the draw
dialect, and so it nust be passed "as is"}

updat e-canvas: func [] [
position: position + 1x1
canvas/draw. reduce ['circle position 5]

]

{The view routine creates a base naned
"canvas" that updates itself 25 tines
per second}

view [
canvas: base 100x100 rate 25
on-time [update-canvas]

To show that canvas is an object!, close the graphic view after it runs a bit, but leave the
console open. Type ? canvas in the console. You will get:

>> ? canvas
CANVAS is an object! with the following words and values:

type word! base

offset pair! 10x10

size pair! 100x100
text none! none

image none! none

color tuple! 128.128.128
menu none! none

308 /349

Helpin' Red

data none! none

enabled? logic! true

visible? logic! true

selected none! none

flags none! none

options block! length: 6 [style: base vid-align:
top at-o...

parent object! [type offset size text image color
menu dat...

pane none! none

state none! none

rate integer! 25

edge none! none

para none! none

font none! none

actors object! [on-time]

extra none! none

draw block! length: 3 [circle 37x37 5]

on-change* function! [word old new /local srs same-pane?
f saved]

on-deep-change* function! [owner word target action new index
part]

In the next example, instead of changing the draw block, we will append it with new draw
commands. The result is that all the previous drawings are kept, and not deleted (in fact
they are redrawn, but...), creating a trail of drawings:

Red [needs 'view]

posi tion: 0x0
command: []

updat e- canvas:

]

posi tion:

{1 could not
net hod directly,

canvas/ dr aw:

view [

canvas: base 100x100

[

position + 1x1
figure out

how t o append the draw

so a bl ock nanmed "command" was
used to pass words to draw dial ect}
append command reduce ['circle position 5]

command

on-time [update-canvas]

rate 25

309 /349

Helpin' Red

Note that if you close the graphic window and type ? canvas in the console you will see a
long block as the value of draw:

>> ? canvas

draw block! length: 84 [circle 1x1 5 circle 2x2 5 circle 3x3
5 circle 4x4 5 ...

An example of programmed drawing:

Red [needs: view

drawcircles: does |
command: [pen red fill-pen bl ue]
repeat x 8 |
repeat y 8 |
position: (x * 11x0) + (y * 0x11)
append comrand reduce ['circle position 4]
]
]

canvas/draw. comand

]

view [
canvas: base 100x100
do [drawcircl es]

521 ®

You could have written the program above without using a function, but you would need the
no-wait refinement for view, like this:

Red [needs: view|
command: [pen red fill-pen bl ue]

vi ew no-wait |

canvas: base 100x100
]
{the "no-wait" refinenent above allows the
script do create the view (base) and then keep
going, to the nested "repeats" bel ow
Wthout "no-wait" the script would stay in the
"vi ew' bl ock}

310/ 349

Helpin' Red

repeat x 8 |
repeat y 8 |
position:(x * 11x0) + (y * 0x11)
append conmand reduce ['circle position 4]

]

canvas/draw. conmmrand

probe command {j ust to show you what was sent to draw
you nust use probe instead of print, because print
tries to evaluate things, and "pen"” and "circle" have
no val ue}

[pen red fill-pen blue circle 11x11 4 circle 11x22 4 circle 11x33 4
circle 11x44 4 circle 11x55 4 circle 11x66 4 circle 11x77 4 circle 11x88
4 circle 22x11 4 circle 22x22 4 circle 22x33 4 circle 22x44 4 circle
22x55 4 circle 22x66 4 circle ...

You see that Red updates the base with the drawings generated by the draw block even
after the face was created by View. That happens because in Red, unlike Rebol, the
default is that whenever you change some field of the face object, the face is updated
automatically. That wouldn't have happened if you added the statement system/view/auto-
sync?: off atthe beginning of the script as described here .

The simplest Paint program ever:

Red [needs: view
newposi ti on: 40x40
linedraw. func [offset] |
ol dposi tion: newposition
newposi tion: offset

append canvas/draw reduce['|ine ol dposition newposition]

]

view [
canvas: base draw]
on-down |

do [linedraw event/of fset]

]
]

Every time you click the mouse on the base, a new line segment is drawn:

[>= 1 =

311/349

Here is a much improved version of the script that, however, does not use the "rule-of-
thumb" structure:

Red [needs: view
Enabl eWite: false

view [
canvas: base 150x150 white all -over
draw]
on-down |

Enabl eWite: true
startpoint: event/offset

]

on-up [Enabl eWite: false]

on-over |
if EnableWite [
endpoi nt: event/ of f set

append canvas/draw reduce['line startpoint endpoint]
startpoint: endpoint

]

Note that the al | - over flag allows the over event to create events for every mouse
movement, as explained here.

Sy [— >

Moving a shape with arrow keys

This script draws an "alien" in the center of a base, and allows the arrow keys to move the
shape up, down, left and right. It uses the translate transform to do the moving. Note the
use of conpose to evaluate things in parenthesis.

Red [needs: view
pos: 28x31

alien: [line 4x0 4x2
"hline 2 "vline 2 "hline -2 'vline 2
"hline -2 "vline 2 "hline -2 "vline 6
"hline 2 "vline -4 "hline 2 '"vline 4
"hline 2 "vline 2 "hline 4 '"vline -2
"hline -4 "vline -2 "hline 10 'vline 2

Helpin' Red

"hline -4 "vline 2 "hline 4 "vline -2
"hline 2 "vline -4 "hline 2 'vline 4
"hline 2 "vline -6 "hline -2 'vline -2

i
i
i
"hline -2 '"vline -2 "hline -2 "vline -2
i
i
i

"hline 2 "vline -2 "hline -2 "vline 2
"hline -2 "vline 2 "hline -6 '"vline -2
"hline -2 "vline -2 "hline -2

move 6x6 '"hline 2 '"vline 2 "hline -2 '"vline -2
move 14x6 '"hline 2 'vline 2 "hline -2 '"vline -2

]

{Next function updates the 'draw block of the cosnps object.
It renoves the word '"translate and the follow ng pair
fromthe beginning of the block and then inserts the
word 'translate again and the updated position's pair!}
updat e-cosnos: func [] |

renove/ part cosnos/draw 2

insert cosnos/draw reduce ['translate pos]

]

vi ew conpose/ deep/only |
cosnos: base bl ack focus
draw [

transl ate (pos)

pen white

fill-pen white
shape (alien)

]

on-key [
switch event/key |
up [pos: pos - 0x1]
down [pos: pos + 0x1]
left [pos: pos - 1x0]
right [pos: pos + 1xO0]
]

updat e- cosnos

I suggest you try to change the code to rotate it.

Moving two or more shapes separately

The following script uses the left and right arrow to move the "spaceship” and "z" and "x"
keys to move the "alien". Note the scope of reduce and compose:

Red [needs: view

313 /349

al i enposi tion:
shi pposi tion:

alien: [line 4x0 4x2

hline 2 "vline 2 "hline -2 '"vline 2

"hline -2 '"vline 2 "hline -2 '"vline 6

"hline 2 "vline -4 "hline 2 "vline 4

"hline 2 '"vline 2 "hline 4 '"vline -2

"hline -4 "vline -2 "hline 10 'vline 2

"hline -4 "vline 2 "hline 4 '"vline -2

"hline 2 "vline -4 "hline 2 "vline 4

"hline 2 'vline -6 '"hline -2 'vline -2

"hline -2 '"vline -2 "hline -2 '"vline -2

"hline 2 "vline -2 "hline -2 '"vline 2

"hline -2 '"vline 2 "hline -6 "vline -2

"hline -2 '"vline -2 "hline -2

move 6x6 'hline 2 '"vline 2 "hline -2 '"vline -

move 14x6 "hline 2 "vline 2 "hline -2 '"vline -
]

spaceshi p: [nmove 0x12 'hline 14 'vline -6
"hline -2 "vline -2 "hline -4 "vline -4 "hline -2
'viine 4 '"hline -4 "vline 2 "hline -2 '"vline 6
]

updat e- cosnos: does|

dr awbl ock:

Helpin' Red

28x15
32x60

reduce conpose/ deep|

"pen white

"fill-pen white

"translate alienposition [shape [(alien)]]
"transl ate shipposition [shape [(spaceship)]]

]

cosnos/ draw. dr awbl ock

]

vi ew conpose/ deep/only [

cosnos: base bl ack focus
draw [
pen white

fill-pen white
transl ate (alienposition)
transl ate (shipposition)

[shape (alien)]
[shape (spaceship)]
]

on-key |
swi tch event/key |

#'z" J[alienposition: alienposition - 1x0]
#'x" [alienposition: alienposition + 1x0]
| eft [shipposition: shipposition - 1x0]
right [shipposition: shipposition + 1x0]

]

updat e- cosnps

]

314 /349

Curiouser and curiouser...

The following script creates a rotating square using a different, somewhat strange
technique:

Red [needs: view|
tick: 1
vi e
nmybox: box rate 10 draw |
mytransform rotate 1 40x40
box 20x20 60x60

]

on-tinme |
tick: tick + 1
mytransform 2: tick

In this script, nyt r ansf or mi 2 refers to the second element of nytransform(1).1listhe
starting value, but is increased on every on-time event. Since this second elementis an
argument of the r ot at e transform, on every on-time event the rotation increases!

A side note is that the first box is a face of View dialect, while the second box is a

command of the Draw dialect that creates a rectangle.

< Previous topic Next topic >

Full-featured Help generator

What is in "system"

If you type ? system on the console, you get:

>> ? system

SYSTEM is an object! with the following words and values:

version tuple!
build object!
words object!
platform function!
system.
catalog object!
errors]
state object!
modules block!
codecs block!
schemes object!
ports object!
locale object!
days]
options object!
script object!
standard object!
lexer object!
console object!
catch? ...
view object!
platform ...

reactivity object!

0.6.3

[date git config]

[datatype! unset! none! logic!...
Return a word identifying the operating

[datatypes actions natives accessors

[interpreted? last-error trace]

length: @ []

length: 8 [png make object! [title:...
[]

[]

[language language* locale locale* months
[boot home path script cache thru-cache
[title header parent path args]

[header error file-info]

[pre-load throw-error make-hm make-msf...
[prompt result history size running?

[screens event-port metrics fonts

[relations stack queue eat-events? debug?

You may explore these paths using either ? or probe.

Interesting things you can do:

Accessing words, not only system's but your own.

If you type ? system/words, you get a very, very long list of all words you have in your Red

session:

>> ? system/words

https://www.helpndoc.com/feature-tour

SYSTEM/WORDS is an object! with the following words and values:

datatype! datatype! datatype!
unset! datatype! unset!
none! datatype! none!
right-command unset!

caps-lock unset!

num-lock unset!

Type a new word like banana on your console, press enter (you get an error) then type ?
system/words again. You will see that banana was added to your session's list of words:

>> banana

*** Script Error: banana has no value
*** Where: catch

*** Stack:

>> ? system/words
SYSTEM/WORDS is an object! with the following words and values:

datatype! datatype! datatype!
unset! datatype! unset!
caps-1lock unset!

num-lock unset!

banana unset!

If you assign a value to banana and repeat ? system/words you will see that the value is
now linked to the word:

>> banana: "hello"

caps-lock unset!
num-lock unset!
banana string! "Hello"

Changing console's prompt:

>> ? system/console/prompt
SYSTEM/CONSOLE/PROMPT is a string! value: ">> "
>> system/console/prompt: "@*=> "

== II@>|<=> n

@*=> ;this is the prompt now

Seeing command history:

>> probe system/console/history

["probe system/console/history" "?
system/console" {system/console/prompt: "@*=> "}
" {system/console/prompt: "@*"} "? system/console/prompt" "?
console/prompt™" "? system" "? system/standard/error" "? system"™ "probe
last system/word" "probe last system"” "probe last a" "a: [a b c]" "probe
last sys ...

Changing error messages:

>> ? system/catalog/errors/script
SYSTEM/CATALOG/ERRORS/SCRIPT is an object! with the following words and

values:
code integer! 300
type string! "Script Error"
no-value block! length: 2 [:argl "has no value"]
lib-invalid-arg block! length: 2 ["LIBRED - invalid

argument for" :argl]

>> system/catalog/errors/script/type: "Don't be silly!! "
== "Don't be silly!! ™

>> nono

*** Don't be silly!! : nono has no value
*** Where: catch

*** Stack:

Choose procedures according to OS:

>> either system/platform = 'Windows [print "Do this"] [print "Do that"]
Do this

Notice the apostrophe before "Windows". This is a word! not a string!

Get the size of screen:

>> print system/view/screens/1/size
1366x768

Debug View:

Use system/view/debug?: yes, as explained in the GUIAdvanced topics chapter.

< Previous topic Next topic >

Free Web Help generator

Appendix | - While we wait for serial
port...

(temporary chapter)

Warning 1: This information is mostly for Windows' users;

Warning 2: Serial communication can be tricky, with hidden characters and configuration
details. If you are not familiar with it, | suggest you start with a more friendly tutorial.

Red does not yet (october 2018) support serial port access. This may be disappointing if
you plan to use Red with Arduino, loT, ESP8266 and hardware in general. So, while we
wait for serial port support, | list here a few tricks and tips | have found useful. They are
mostly related to sending commands to Windows' cmd using call, but Linux users may
also find interesting information here.

How Rebol does it. Probably Red will be the same:

Look at Rebol's documentation:;

It seems to me that in Rebol you have to tell what your COM port is, create a "serial
thing" (named "ser" in the example below) and configure it. Then, to send messages to
serial, you insert your messages in this "thing", and to read what is received, you copy ,
pick or first this "thing".

Rebol []
Systeni ports/serial: [conv]
ser: open/direct/no-wait serial://portl/ 9600/ none/8/1

ser/rts-cts: fal se

viewtitle |ayout |

f: field 200
btn "TX" [insert ser f/text update ser]
t: area

rate 20 feel[engage: [append t/text copy ser show t]]
] "My Serial Test"

https://www.helpndoc.com
http://www.rebol.com/docs/changes-2-5.html#section-81

[REBOL - My Serial Test — >

|my name

Titmestamp= 537314
Timestamp= 538316
Timestamp= 539317
Timestamp= 540218
Timestamp= 541314
Timestamp= 542320
my nameTimestamp= 943675
Timestamp= 544676
Timestamp= 545677

Tirmactarmn— FARETH

In this example, what is sent by the device is shown in the area, and when you press TX,

whatever you wrote in the field will be sent to the device.

| tested it with an ESP8266 program that sends a timestamp every second, but also
transmits back whatever it receives. The sketch also sends a ctrl-z (Ox1A) every 10

messages. In case you are interested, here is the Arduino sketch:

long interval = ; /Imlliseconds between sending timestanps
|l ong previousMIlis =
Il ong count =
void setup(){
Seri al . begi n();
}

void loop()
{ /] this first part "echoes" whatever is sent
/'l when characters arrive over the serial port...
if (Serial.available()) {
/1 ...wait a second and send them back.
del ay()
while (Serial.available() > 0) {
Serial.wite(Serial.read());

}
}
/'l this second part sends a timestanp every interval
long currentMIlis = mllis();
if(currentMIlis - previousMIlis > interval) {
if (count >) {
count =
Serial.print("stop\x1A"); // string "stop" & ctrl-z
}
previousMIllis = currentMlIlis;
Serial.print("Tinmestanp= ");
Serial.println(currentMlIlis);
count = count +1;
}

And now for tips and tricks to use Red as itis...

Afunction to get the COM ports available:

Sends the command el to cmd and parses (not using parse) the returned value:

Red []
f uncCGet ConPorts:

has[cndQut put comports b c i] |

cndCut put :
comports: []

cal | /out put "node" cnmdQut put
trimwi th cndCut put
cndQut put: split cndQut put

foreach i cndQut put [
b: copy/part i 3
if b ="covw |
c: copy/part i 4
append comports ¢

]
]

return comports

]

probe funcGet ConPorts

["com7" "COM3"]

Configuring a serial port:

The complete cmd's command to configure a COM port would be:
node COVZ BAUD=9600 PARI TY=n DATA=8

So this would be a COM port configuring function:

Red []
Serial Config: function [COVort baud parity datasize]]|
command: "
command: rejoin [command "node " COvport " BAUD=" baud
PARI TY=" parity " DATA=" datasi ze]

print command
call/shell form command

]
Serial Config "COwW" "9600" "n" "8"

You can check if it works by typing [ffefels on cmd before and after you run the script above.
Rl shows the current configuration of your ports.

Using ComPrinter.exe and SerialSend.exe :

These small executables (available for download here) may be accessed using a call
command inside a Red script to send and receive data from a serial port. They are open

https://batchloaf.wordpress.com/

source programs by Ted Burke (thanks!). These are great little programs that, with some
creativity, may allow Red to do a lot!

The Red scripts examples here assume these executables are in the same folder as the
script. Just paste a copy of them (the executables) there.

ComPrinter *

*look for the updated version you will find in the comments (bottom) of its page (direct
download link).

From webpage: "ComPrinter is a console application (i.e. a command line program) that
opens a serial port and displays incoming text characters in the console. It features several
very useful options.”

Options for ComPrinter.exe:

/ devnum - Use this to specify a COM port. The default is the highest available com port,
including ports >= 10. For example, to set COM7 use /devnum 7

/ baudr at e - Use this to specify the baud rate. Default is 2400 bits per second. For
example, to set baud rate to 9600, use /baudrate 9600

/ keyst r okes - Use this to simulate a keystroke for each incoming character, for
example to type text into an application.

/ debug - Use this to display additional information when opening the COM port.

/ qui et - Use this to supress the welcome message text and other information. Only text
received via the COM port will be displayed.

The following options are only available in the updated version:

/ char count - Exitafter a certain number of characters. For example, to exit after 6
characters, use /charcount 6

/ ti meout - Exitafter a timeout — i.e. no data received for the specified number of
milliseconds. For example, to exit after 2 seconds of no data, use /timeout 2000

/ endchar - Exitwhen a certain character is received. For example, to exit when the
letter ‘X' is received, use /endchar x

/ endhex - Exitwhen a certain hex byte is received. For example, to exit when the hex
value OXFF is received, use /endhex FF

Example:

The example below sends what it receives in COM7 at baud 9600 to file "input.txt”" until it
receives a ctrl-z. It creates the file automatically or appends an existing file. The Arduino
sketch above sends a ctrl-z every now and then, so your output may be longer or shorter:

Red[]

https://batchloaf.wordpress.com/comprinter/
https://drive.google.com/file/d/0B3NaVR72FYQcMUJoZDJBUEI0Q2M/view?usp=sharing
https://drive.google.com/file/d/0B3NaVR72FYQcMUJoZDJBUEI0Q2M/view?usp=sharing

call/output form " ConPrinter.exe /devhum 7 /baudrate 9600 /endhex 1A"
% i nput . txt"

Content of input.txt file after running the script:

mj input.tet - Motepad

File Edit Format View Help
Timestamp= 1622621
Timestamp= 1623622
Timestamp= 1624623
Timestamp= 1625624
Timestamp= 1626625
Timestamp= 1627626
Timestamp= 1628627
Timestamp= 1629628
StDﬂ

In case you want your Red script to do something else while cmd reads the serial port, you
could use a cmd redirection (">") to send the output to a file. In this case, it seems to work
only with call/shell:

Red|]
call/shell form"ConPrinter.exe /devhum 7 /baudrate 9600 /endhex 1A >
i nput . txt"

print "This is printed i mediately, while the input.txt file is still
bei ng created"

Unfortunately, you can't write to the serial port while cmd is receiving serial data. And by the
way, Windows takes a few seconds to update the file, so if you open "input.txt" too quickly,
it may be empty. Of course, it may also be empty because something went wrong...

SerialSend

From webpage: "SerialSend is a litle command line application | created to send text
strings via a serial port. | mainly use it to send information to microcontroller circuits via a
USB-to-serial converter, so it's designed to work well in that context.”

The following command sends the characters “abc 123” via the highest available serial port
at the default baud rate (38400 baud).

Seri al Send. exe "abc 123"
Options for SerialSend.exe:

/ devnum - Use this to specify a COM port. The default is the highest available com port,
including ports >= 10. For example, to set COM7 use /devnum 7

https://batchloaf.wordpress.com/serialsend/

/ baudr at e - Use this to specify the baud rate. Default is 38400 bits per second. For
example, to set baud rate to 9600, use /baudrate 9600

/ hex - Arbitrary bytes, including non-printable characters can be included in the string as
hex values using the “/hex” command line option and the “\x” escape sequence in the
specified text. For example, the following command sends the string “abc” followed by a
line feed character (hex value Ox0A) — i.e. 4 bytes in total. use SerialSend.exe /hex
"abc\x0A"

Example:

Red[]
call form

Example that sends variables and functions:

Red[]
myVari able: "Tine now is:
txt: rejoin [nmyVari abl e now]

conmand: formrejoin ["Serial Send. exe /devnum 7 /baudrate 115200 " txt]
print comrand
call command

Note that | increased the baudrate to 115200 in this second example. That is because |
was having troubles at 9600 baud: for some reason, the message was being truncated to
about a dozen characters. After many hours trying to isolate the bug (a null modem cable
would have helped, but | don't have one at the moment), I gave up and just increased the
speed, both in the Red script and in the Arduino sketch. That did not completely fix it, but |
could send strings over 200 chars long, which is good enough for now.

A utility similar to SerialSend and ComPrinter, based on the work of Ted Burke, is comsniff
- This utility not only prints what it receives on the cmd console, but also sends whatever
you type, as you type, to the serial port. | had many problems trying to use it, but it's open
source and worth a mention here.

Other useful (?) info in case you really don't want to use external
executables:

Sending characters to a COM port: (not extensively tested)

[found useful information about sending characters to the serial port in Windows here.
Basically, you may send data to the serial port using:

(Jccho hell o > COML

But this command also sends an extra space, a CR and a LF. Besides, it does not
recognize higher port numbers (above 97?). You may choose to send a more universal
command as this:

(Iset /p x="hell 0" <nul >\\.\COW2

Here is a function that uses the first command:

Red []
Seri al Sender: function [stringtosend COVport]]|

https://github.com/klarsys/comsniff
https://batchloaf.wordpress.com/2013/02/12/simple-trick-for-sending-characters-to-a-serial-port-in-windows/

command: []

append command "e "

append conmand stringtosend
append command " > "

append conmand COVport
call/shell form command

]

Seri al Sender "hello world" "COW"

You may send whole files to the serial port using [de]o) eIl SRX-P S qageel ¥, OF, for port
Vo SIS0l copy yourfile.txt \\.\COM21

(Supposed to) redirect serial inputs to afile: (well, kind of tested but...)

These commands are supposed to send the input of a serial port to a file:

(COPY COW dat a. t xt

(At ype comil: >> data.txt

I've had very bad results with that. Windows' cmd seems to start reading when it pleases
and that may take tens of seconds, even minutes, or never at all. Anyway,if you are brave,
don't forget to match the baud rate, parity and data size first!

By the way, to stop cmd from recording the data, the device should send a ctrl-z character.
That would be Serial.write ("26") or Serial.print("<Stuff>\x1A") inArduino. This
seems to work with (when works at all) but not with [S9s.

Terminals:
Here is a nice article about serial terminals.

Terminal - com port development tool - Lovely, very complete, but takes some getting used
fo.

PuUuTTY can be configured to work as a very nice serial terminal. It can save your session to
a log file.

But to be honest, | mostly just use Arduino IDE's Serial Monitor.

< Previous topic Next topic >

https://learn.sparkfun.com/tutorials/terminal-basics/all
https://sites.google.com/site/terminalbpp/
https://www.chiark.greenend.org.uk/~sgtatham/putty/

Create cross-platform Qt Help files

Appendix Il -CGl and RSP using
Cheyenne server

Red does not have CGl full support as of november 2018. The first chapters here cover the
very basic steps using Rebol. | believe that Red behavior will be very similar, if not the
same. That does not mean you cannot use Red for CGIl. You can find a good reference of
how to use it here.

There is plenty of information about CGl in the Internet. However, | had difficulty with the very
first steps, specially how to use the minimal Cheyenne server on my own computer, as
guinea pig for my tests. So | wrote this as a "get-started-guide", not a full comprehensive
tutorial about CGland RSP.

What is CGI

Common Gateway Interface (CGl), is a protocol that allows servers to execute programs
that generate web pages dynamically, that is: programs that generate HTML code on-the-
fly, "tailored" to the user's input.

CGl has been replaced by a vast variety of web programming technologies. Most
developers today use scripting languages like PHP to do what CGI does.

Then why should you bother? Well, maybe you don't want to be a web developer, just
connect your Red/Rebol scripts to web browsers, create some webapps, whatever. Web
browsers are a great way to display information and interface with the user. And yes, you
can get access to the Internet too.

What is RSP

I may be wrong on this, but | believe RSP is a Cheyenne-only thing. lts a kind of simplified
way to do CGil, using Rebol embedded in the HTML code. What goes on is that Cheyenne
packs a Rebol interpreter embedded in its code, so, unlike regular CGlI, where you have to
have to call some script interpreter (an executable) to run your script and create the HTML,
RSP are files that are interpreted by a sort of native Rebol in Cheyenne. Besides,
Cheyenne offers some nice RSP APIs to work with your scripts.

Why Cheyenne?

Because its incredibly small, just about 500 KB! It has one single configuration file and is
fully portable. Besides, it's written in Rebol by Nenad Rakocevic and, as mentioned,
natively interprets it. You can easily pack the whole thing plus your scripts in a project and
still be below 1MB.

Basic HTTP information link:

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://github.com/red/red/wiki/[DOC]-Using-Red-as-CGI
https://www.cheyenne-server.org/

A primer on HTTP - Very good, and has links to more detailed information.

< Previous topic Next topic >

https://medium.com/douglas-matoso-english/http-primer-for-frontend-developers-f091a2070637

Free CHM Help documentation generator

Installing and configuring Cheyenne

Go to https://mww.cheyenne-server.org/download.shtml and download the zip. | chose

Cheyenne Pro because it's smaller, but you may get Cheyenne Command if you want
some extras.

Unzip it anywhere on your computer. | unziped it in a folder named RED, So | got this:

cheyenne-r0320-pro — | ot
Y <« RED » cheyenne.. v O Seard
REBOL A Name :
Bl @l cheyenne-r0920-pro.exe
W RED

cheyenne-ri820-pro
Compiler

Documentation ol e >

1 itern =

Now create a folder named "www" inside Cheyenne's folder, like this:

cheyenne-ri920-pro — O e
T « RED » cheyen.. » w 0 | Sear
REBOL & Mame a
Rebol_IDE S—
e @l cheyenne-r0920-pro.exe

cheyenne-r0920-pro
Compiler

Documentation v 3

2 itemns =

Now copy the HTML below to some pure text editor and save it as index.html inside the
www folder:

<! DOCTYPE htm PUBLIC "-//WBC//DITD HTM. 4.01//EN'
"http://www. w3.org/ TR htm 4/strict.dtd">

<htm >

<head>

https://www.helpndoc.com
https://www.cheyenne-server.org/download.shtml

Helpin' Red

<nmeta content="text/htm; charset=ISO 8859-1"
htt p- equi v="content-type">
<title></title>
</ head>
<body>
<h2 style="text-align: center;">Congratul ati ons! Your
Cheyenne server is working!</h2>
<div style="text-align: center;">Have a nice day!</div>
</ body>
</htm >

You should have this:

w cheyenne-rl920-pro & indechtml

WA

Now double-click on the Cheyenne executable. | had a couple of Windows Defender
warnings, | chose more info/run anyway.

On the task bar, a little Rebol Icon tells me Cheyenne is running:

Now open your favorite browser, type "localhost" in the address bar and press enter. You
should access the html page you just created:

[localhost X +
& C Y @ localhost * BH O :

Congratulations! Your Cheyenne server is working!

Have a nice day!

After this first run, Cheyenne creates a few extra files and folders and it should look like this
NOW:

329 /349

Helpin' Red

I] = | cheyenne-r0820-pro — O *
“ Home Share Wiew ﬂ
— v <« RED » cheyenne.. w| Search ch... @
RED & Mame "
cheyenne-r0920-pro log
log W
— @ cheyenne-r0920-pro.exe
Compiler |=| chey-pid-27388.log
httpd.cf
Documentation L| httpd.cfg v
LU 4 >
3 items 1 itemn selected 2,70 KB oo e

You may quit Cheyenne right-clicking on the taskbar icon and choosing Quit:

Run as service

Reload Config
Reset Workers

Quit

Ports are the "channels" of computer communication. By default Cheyenne listens to port
80, but you may want to change that, either to avoid conflicts or to, arguably, add some
extra security. A port number is a 16-bit unsigned integer, thus ranging from 0 to 65535,
but I suggest you choose a random number around 30000.

By the way, using Cheyenne as described in this text should be secure, unless you explicitly
open your ports on your DSL modem and firewall on your PC.

To change the port Cheyenne listens to, for example, 32852, open the httpd.cfg file with
any plain text editor, and add the following line:

;--- define alternative and/or multiple listen ports (by default, cheyenne will run
on 80)

;listen [80 10443]
listen [32852]
bind SSlto [.shtml .shtm]

bind php-fcgi to [.php .php3 .php4]

330/ 349

Or may just uncomment the line above that and change the port numbers (Cheyenne may
listen to more than one port).

Now you can access your index.html typing in the address bar of your browser
localhost:<port number>:

[localhost:32852 *® +

& C 1 @ localhost:32852 * @

Congratulations! Your Cheyenne server
is working!

Have a nice day!

For the record, the common port numbers (avoid them) are:

20: File Transfer Protocol (FTP) Data Transfer

21: File Transfer Protocol (FTP) Command Control

22: Secure Shell (SSH) Secure Login

23: Telnet remote login service, unencrypted text messages
25: Simple Mail Transfer Protocol (SMTP) E-mail routing
53: Domain Name System (DNS) service

80: Hypertext Transfer Protocol (HTTP) used in the World Wide Web - Cheyenne
default

110: Post Office Protocol (POP3)

119: Network News Transfer Protocol (NNTP)

123: Network Time Protocol (NTP)

143: Internet Message Access Protocol (IMAP) Management of digital mail
161: Simple Network Management Protocol (SNMP)

194: Internet Relay Chat (IRC)

443: HTTP Secure (HTTPS) HTTP over TLS/SSL

If you were to remove all commented lines from httpd.cfg file (don't do it), you would get
the text below, which I think is a self-explanatory simple configuration:

modules [
userdir
internal
extapp
static
upload
action
fastcgi
rsp
SSi

Helpin' Red

alias
socket

]

globals [
bind SSIto [.shtml .shtm]
bind php-fcgi to [.php .php3 .php4]
bind-extern CGl to [.cgi]
bind-extern RSP to [.j .rsp .r]

]

default [

root-dir Yowww/
default [%index.html %index.rsp %index.php]
on-status-code [
404 "/custom404.html"
]

socket-app "/ws.rsp" ws-test-app
socket-app "/chat.rsp" chat
webapp [

virtual-root "/testapp”
root-dir Yowww/testapp/
auth "ftestapp/login.rsp"

< Previous topic Next topic >

332 /349

Create cross-platform Qt Help files

RSP -"Hello world"

Also check Cheyenne's page about RSP

In RSP scripts, Cheyenne interprets anything in between "<%" and "%>" as Rebol code!

Openyour index.html (the one you created in the "Installing and configuring..." chapter)
with a plain text editor, add the following highlighted lines and save it in the www folder as
myindex.rsp.

<! DOCTYPE htm PUBLIC "-//WBC//DTD HTM. 4. 01//EN'
"http://www. w3.org/ TR/ htm 4/strict.dtd">
<% print "Hello worl d" %
<htm >
<head>
<meta content="text/htm ; charset=I SO 8859-1"
htt p- equi v="content -type">
<title></title>
</ head>
<body>
<h2 style="text-align: center;">Congratul ati ons! Your
Cheyenne server is working!</h2>
<div style="text-align: center;">Have a nice day!</div>
<% print 55 + 88 %
</ br>
</ body>
</htm >
<% print rejoin ["Tine nowis " nowtine] %

With Cheyenne running (listening to default port 80), type localhost/myindex.rsp on your
browser's address bar. You should get this:

[localhost/myindexrsp X +
& C Y @ localhost/myindexrsp ¥ @ :
Hello world
Congratulations! Your Cheyenne
server is working!

Have a nice day!

143

Time now 1z 11:50:19

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.cheyenne-server.org/wiki/Rsp/Basis.html
https://www.cheyenne-server.org/wiki/Rsp/Basis.html
https://www.cheyenne-server.org/wiki/Rsp/Basis.html

Helpin' Red

< Previous topic Next topic >

334 /349

Full-featured EBook editor

RSP - Request and Response

You should refer to this page while reading this.

Requests:
Create the following script on a plain text editor and save it in the www folder as
reqres.rsp.

<%
print {}

print "content probe request/content print "
"
print "nethod ' probe request/net hod print "
"
print "posted ' probe request/ posted print "
"
print "client-ip ' probe request/client-ip print "
"

print "server-port
print "translated ...
print "query-string .
%

<HTM.>

<TI TLE>Si npl e Wb For nx/ Tl TLE>

<BODY>

<FORM ACTI ON="reqres.rsp">

<I NPUT TYPE="TEXT" NAME="Fi el d" SIZE="25">

<I NPUT TYPE="SUBM T" NAME="Subm t" VALUE="Submt">
</ FORVF

</ BODY>

</ HTML>

' probe request/server-port print "
"
' probe request/transl ated print "
"
' probe request/query-string print "
"

With Cheyenne running (listening to default port 80), type localhost/reqres.rsp on your
browser's address bar. You should get this:

https://www.helpndoc.com/create-epub-ebooks
https://www.cheyenne-server.org/docs/rsp-api.html

Helpin' Red

[Simple Web Form

L5 C O

content
method
posted
client-ip
server—-port
translated
query-string

Submit

= O ot
x +

@ localhost/regres.rsp w @ :

[]
= GET
= none
= 127.0.0.1
= 80

= %www/regres.rsp

— rear

Now type something in the field, and press the submit button. Your browser should look like

this:

[Simple Web Form

L CtO O

content
methed
posted
client-ip
server-port ..
translated ...
query-string .

= O X
x +

localhost/reqres.rsp?Field=my+name&Submit=Submit ¥ = @

[Field "my name" Submit "Submit"]
GET

none

127.0.0.1

80

fWwWw/reqres.rsp
"Field=my%20name&Submit=Submit"

|my name|

Submit

What's happenning:

It's clear that Cheyenne picks the client's (browser) request, decode it, and stores alll
important values in internal variables of the object request.

When you click Submit button, ACTI ON="r eqr es. rsp" sends you to the same (refreshed)
page! But, to do that, the browser sends a request that is split and stored in the request
object's variables, which are shown in the refreshed page.

Responses:

In the same way that requests have the request object, responses have the response
object. However, most of this object's fields are functions (actions). The most relevant

336 /349

exception is response/buffer, that is where Cheyenne's RSP stores all that is to be sent
to the client. It's a block, and so you can manipulate it as any series.

If you change the reqres.rsp code to:

<%

append response/ buffer "<HTM.>"

append response/ buffer "<h3>This text is in the response buffer</h3>"
append response/ buffer "<h4>This text is in the response buffer

t oo</ h4>"
append response/ buffer "<p>So is this</p>"
%
You get:
= | x
[lecalhost/regres.rsp X +
&« C 10 @ localhost/regres.rsp W @ :

This text is in the response buffer
This text is in the response buffer too

S0 15 this

Cool example:

Create and save the following RSP script as coolexample.rsp in Cheyenne's www
folder. Open localhost/coolexample.rsp on your browser and click a button. If your browser
support HTML's SVG (most do), a corresponding image should show under it's button.

<%
print {}
print "content = " probe request/content print "
"

%

<HTM_>

<TI TLE>Cool Exanpl e</ Tl TLE>
<BODY>
Cool Exanpl e<p>
<FORM ACTI ON="cool exanpl e. rsp">
<I NPUT TYPE="SUBM T" NAME="Tri angl e" VALUE="Tri angl e" >

<%
if not enpty? request/content |
if (first request/content) = "Triangle |
print {<svg w dth="100" hei ght="100">
<pol ygon poi nts="0, 100 50,0 100, 100"
style="fill:line;stroke: purple;stroke-width:5;fill-
rul e: evenodd; " />
</ svg>
}

]

%

Helpin' Red

<I NPUT TYPE="SUBM T" NAME="Square" VALUE="Squar e" >

<%
if not enpty? request/content |

if (first request/content) = 'Square |
print {<svg w dth="100" hei ght="100">
<rect wi dth="100" hei ght="100" style="fill:rgh(0, 0, 255); stroke-

wi dt h: 10; stroke: rgb(0,0,0)" />
</ svg>
}
]

]
%
<I NPUT TYPE="SUBM T" NAME="Circle" VALUE="Gircl e" >

<%
if not enpty? request/content |
if (first request/content) = "Circle |
print {<svg w dth="100" hei ght="100">
<circle cx="50" cy="50" r="40" stroke="green" stroke-w dth="4"
fill="yell ow' />
</ svg>
}
]
]
%
</ FORM>
</ BODY>
</ HTM_>

- - o X

| Cool Exarnple S —_

<« C O O locathosticnclesam.. ¥

CONLENE sranes = [Circls "Circle”™]

Cool Example

Triangls
Squara
Circla
< Previous topic Next topic >

338 /349

Helpin' Red

Create help files for the Qt Help Framework

CGI - "Hello world"

See also: Quick and Easy CGI - A Beginner's Tutorial and Guide

Download "rebol core" interpreter from Rebol's download page. Save that executable to
the www folder of your Cheyenne.

Now create the following script in a plain text editor and save it as myfirst.cgi in the same
www folder.

ww/ r ebol . exe -c

REBCL []

print "Hello world!"

print "
"

print ["Date/tine is:" now

Your www folder now should look like this:

€ indexchtml
|_1 myfirst.cgi
|_1 myindex.rsp
E] rebol.exe

Now if your server is running (port 80) and you type localhost/myfirst.cgi in your browser's
address bar, you get:

— O X
[localhost/myfirst.cgi b4 +

< C Y @ localhost/myfirstcgi ¥ @ :

Helle world!
Date/time 15;: 6-Nowv-2018/21:35:16

Explaining the script:

ww\/ r ebol . exe -c ; This line is very inportant
; it tells your server the
path to the interpreter.
The -c option tells Rebol to
run on CE@ node.

REBOL []

print "Hello world!'" ; Sends "Hello world!"™ to the browser.
print "
" ; Sends an HTML code for carriage return.
print ["Date/tinme is:" now ; Sends tinme and date

339 /349

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://www.rebol.com/docs/cgi1.html
http://www.rebol.com/downloads.html

Helpin' Red

< Previous topic Next topic >

340/ 349

Helpin' Red

Free help authoring environment

CGI - Processing web forms

See also: Creating and Processing Web Forms with CGI (Tutorial)
Create the following form1.html file on your www folder:

<HTM.>

<TI TLE>Si npl e Wb For nx/ Tl TLE>

<BODY>

Si mpl e Web For nx/ b><p>

<FORM ACTI ON="f or mhandl er. cgi ">

<I NPUT TYPE="TEXT" NAME="Fi el d" SIZE="25">

<I NPUT TYPE="SUBM T" NAME="Subm t" VALUE="Submt">
</ FORW>

</ BODY>

</ HTM.>

= | Pt
[Simple Web Form X +

< C Y @ localhost/fformihtml ¥ @ :

Simple Web Form

Submit

Now create and save in the same folder the formhandler.cgi script:

#! w1 ebol . exe -c
Rebol []
print [<HTM.><PRE> nold system options/cgi </ HTM.>]

When you write "My Name" in the field and press the Submit button, your form1.html will
call formhandler.cgi, and this script will print what the CGl protocol passes to Rebol and
is stored in system/options/cgi whichis:

make object! [
server-software: "Cheyenne/l.0"
server-nane: "Ungaretti"
gateway-interface: "Cd/1.1"
server-protocol: "HITP/ 1. 1"
server-port: "80"
request - met hod: " GET"
pat h-info: "/fornmhandl er.cgi”
pat h-transl ated: "wwh fornmhandl er. cgi "
script-nane: "/fornmhandl er.cgi”
query-string: "Fi el d=My+Nanme&Subm t =Submit"

341 /349

https://www.helpndoc.com/help-authoring-tool
http://www.rebol.com/docs/cgi2.html

renot e- host: none
renot e-addr: "127.0.0.1"
aut h-type: none
renot e-user: none
renot e-ident: none
Cont ent - Type: none
content-length: "0"
ot her - header s:
["HTTP_ACCEPT" {text/htm , application/xhtm +xm , application/..

]

This is good to know, but Rebol offers a function to decode the CGI, named decode-cgi
that converts the raw form data into a REBOL block that contains words followed by their
values. The information we want (the contents of the field), are in the query-string variable.
So change formhandler.cgi script as follows:

#! ww/ r ebol . exe -c

Rebol []
print [<HTML><PRE> decode-cgi system options/cgi/query-string </ HTM.>]

The browser output now is:

Field My Name Submit Submit

CGl cool example

This is the CGl version of the RSP's cool example. Save it as coolexample.cgi in
Cheyenne's www folder. Open in browser using localhost/coolexample.cgi.

ww\/ r ebol . exe -c
Rebol []
; First, a not very elegant way of avoi ding crashes:
ei ther systenioptions/cgi/query-string = none |
system options/cgi/query-string:
decoded: ""

11

decoded: second decode-cgi systenfoptions/cgi/query-string

; Lets show what's in "decoded"
print {}
print "decoded = " probe decoded print "
"

; Here we start HTM-
print {
<HTM.>

<TI TLE>Cool Exanpl e</ Tl TLE>
<BCDY>
Cool Exanpl e</ b><p>
<FORM ACTI ON="cool exanpl e. cgi ">}

print {<INPUT TYPE="SUBM T" NAME="Tri angl e" VALUE="Tri angl e">

}
if decoded = "Triangle" [
print {<svg w dth="120" hei ght="120">
<pol ygon poi nts="0, 100 50,0 100, 100"
style="fill:line;stroke: purple;stroke-width:5;fill-rule:evenodd;" />
</svg>
}

Helpin' Red

print {<INPUT TYPE="SUBM T" NAME="Square" VALUE="Square">

}
i f decoded = "Square" [

print {<svg w dt h="120" hei ght="120">

<rect wi dt h="100" hei ght="100" style="fill:rgbh(0, 0, 255); stroke-
wi dt h: 10; stroke: rgb(0,0,0)" />

</svg>
}
]

print {<INPUT TYPE="SUBM T" NAME="Circle" VALUE="Ci rcl e">

}
if decoded = "Circle" [

print {<svg w dt h="120" hei ght="120">

<circle cx="50" cy="50" r="40" stroke="green" stroke-w dth="4"
fill="yellow" />

</svg>
}
]

Now we finish HTM
print {
</ FORM>
</ BODY>
</ HTML>}

< Previous topic Next topic >

343 /349

Easy EBook and documentation generator

CGl using Red

Hello World!

See also: Using Red as CGl

Make a copy of the Red interpreter and save that executable to the www folder of your
Cheyenne, just like you did to Rebol.

Rename Red's executable to something like redcgi.exe. | found that to be important
because | have Red already "installed" in my computer (where my server is running -
localhost), and the operating system tries to just run the script, not "CGl it".

Openthe httpd.cfg file in a plain text editor, and add .red to the "bind-extern CGI to" block,
as shown:

globals [

;--- define alternative and/or multiple listen ports (by default, cheyenne
will run on 890)

;listen [80 10443]

bind SSI to [.shtml .shtm]

bind php-fcgi to [.php .php3 .php4]

bind-extern CGI to [.cgi .red]

bind-extern RSP to [.j .rsp .r]

Now create the following script in a plain text editor and save it as myfirst.red in the same
www folder. --cli is important, otherwise Red may try to compile and open the GUI console.

#! www/ r edcgi . exe --cl

Red []

print "Hello world!"

print "
"

print ["Date/tine is:" now

Now if your server is running (port 80) and you type localhost/myfirst.red in your
browser's address bar, you get:

[localhost/myfirstred X +
<« C Y @ localhost/myfirstred ¥t 0 :

Hello world!
Date/'time 15 14-Nov-2018/10:33:50

https://www.helpndoc.com
https://github.com/red/red/wiki/[DOC]-Using-Red-as-CGI

Processing web forms.

As mentioned, Red does not have yet full support for CGIl. However, | believe it's possible
to retrieve and decode HTTP messages in Linux, using Boleslav Bfezovsky's http-

tools.red . | don't know how to do that in Windows.

< Previous topic Next topic >

https://github.com/rebolek/red-tools/blob/master/http-tools.red
https://github.com/rebolek/red-tools/blob/master/http-tools.red

Easy CHM and documentation editor

Appendix Il -MQTT using Red

MQTT has become the popular protocol for IoT (Internet of Things) communication. On the
Internet Protocol Stack, it works on the same layer as HTTP, but MQTT is lighter, uses less
bandwidth, and allows keeping a steady line to devices and near real time communication.

Unlike CGl or serial port support, MQTT is not a priority in Red's development, and it will
depend on the community to create native libraries. However, it's possible to publish and
subscribe to topics (as client) using Red and some external executables and DLLSs.

Il not go in details about MQTT, I assume you know the basics of it. In case you don't, the
best information | found is in the Hivemq tutorials.

To monitor MQTT messages, you can use any of the tools listed here. | use MQTT-spy, but
any client utility will do, including some Android apps that you can install on your phone
(search Google-Play).

lused a free "Cute cat" account on CloudMQTT MQTT broker for my tests.
What you need:
You must have in your script's folder:

mosquitto_pub.exe
mosquitto_sub.exe
mosquitto.dll
libssl-1_1.dll
libcrypto-1_1.dll

| obtained mosquitto_pub.exe, mosquitto_sub.exe and mosquitto.dll by installing
mosquitto downloaded from here. I used the 32bit install. These files are in the "mosquitto”
folder created by installation.

During installation, you get the following warning:

This page lists packages that must be installed if not already present { 9)

Openssl - install 'Win32 OpenssL v, 1.0% Light' then copy libssl_1-1.dll and libarypto_1-1.dll

Fm Hemim e dibba Aie e

http:/fslproweb. com products Min 320penssL. himl

The libssl-1_1.dll and libcrypto-1_1.dll are files of the OpenSSL toolkit. So, as
recommended, | downloaded OpenSSL from

http://slproweb.com/products/Win320penSSL.html and installed it. During installation,

https://www.helpndoc.com
https://www.hivemq.com/mqtt-essentials/
https://www.hivemq.com/mqtt-toolbox
https://www.cloudmqtt.com/plans.html
https://mosquitto.org/download/
https://www.openssl.org/
http://slproweb.com/products/Win32OpenSSL.html

make sure you choose to install the DLLs to OpeSSL folder, it will make them a lot easier
to find:

i8] Setup - OpenSSL 1.1.1 Light (32-bit) —

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing OpenS5L
Light (32-bit), then dick Mext.

Copy OpenSSL DLLs to:
() The Windows system directory
(®) The OpenssL binaries (/bin) directory

Then | copied and pasted libssl-1_1.dIl and libcrypto-1_1.dll not only to mosquitto
directory, but also to my script's folder.

To understand the use of mosquitto_pub.exe check this page, and for
mosquitto_sub.exe there is this page. A good page with examples is Using The
Mosquitto_pub and Mosquitto_sub MQTT Client Tools- Examples, and its respective video.

Publishing:

The following scriptis a crude MQTT publisher. It doesn't offer many options, but it's
enough to show how to create a mosqutto_pub command line:

Red [needs view]
view [
text "broker:" 50 right broker: field "ml2.cloudngtt.coni 150
text "port:" 30 right port: field "13308" 50
text "user:" 30 right user: field "genkXXX"
text "password:" 60 right password: field "CRfa8kuxXXxX" 120
return
text "topic:" 50 right topic: field 200 "/test"
text "nessage"” 60 right nessage: field 300 "Hello World!"

return
button "Publish" [
call rejoin ["nosquitto _pub.exe -h " broker/text " -p "
port/text " -u " user/text

-P " password/text t opi c/ t ext message/ t ext

https://mosquitto.org/man/mosquitto_pub-1.html
https://mosquitto.org/man/mosquitto_sub-1.html
http://www.steves-internet-guide.com/mosquitto_pub-sub-clients/
http://www.steves-internet-guide.com/mosquitto_pub-sub-clients/
https://youtu.be/J4pqv9__uzE

Helpin' Red

£y Red: untitled — >
broker: |r'r112.c|u:uuu:|mu:|tt.cum | port: UsEr: password: | CREaBkuXX
topic: | ftest | message | Hello World!
Publish

You can use print instead of cal | inthe script above to see the full command passed to
mosquitto_pub.exe.

Subscribing:

Subscribing using mosquitto_sub.exe is a little less straightforward, because it outputs
the published messages on cmd's CLIconsole. I haven't figured out how to constantly feed
this to a Red script. My solution so far is to redirect the output of mosquitto_sub.exe to a
text file and pool it constantly to detect any file size changes. If it changes, the Red script
reads it to get the new messages.

This script subscribes the topic and redirects the outputs to mqttlog.txt using cmd
redirection command ">":

Red [needs view]
view [
text "broker:" 50 right broker: field "ml2.cloudmtt.con 150
text "port:" 30 right port: field "13308" 50
text "user:" 30 right user: field "genkXXxX"
text "password:" 60 right password: field "CRf a8kuxXXXxX" 120

return
text "topic:" 50 right topic: field 200 "/test"
return
button "Subscribe" [
call/shell rejoin ["nosquitto sub.exe -h " broker/text " -p "
port/text " -u " user/text
" -P " password/text { -t "} topic/text {" > ngttlog. txt}
]
]
]
E Red: unditled -
broker: | mizclcudmgttcom | Port (13306 | wses [qenkoo | pessward | CRpaBkuccof
topic: | fpest
Subseribe

And this script constantly checks mqttlog.txt for updates and puts them on an area:

Red [needs: view
ol dsize: O
view [
mgttl og: area rate 2 ;checks txt file tw ce per second
on-time |
newsi ze: size? %ngttlog. txt"
i f newsize <> oldsize |

348 /349

Helpin' Red

mgttlog/text: read % nyttlog. txt"
ol dsi ze: newsi ze

mgtthack
makeshift mgtt
it's working

< Previous topic

Easily create EBooks

349 /349

https://www.helpndoc.com/feature-tour

	Homepage
	Downloads
	Introduction
	HR conventions and notations

	Getting started
	Rededitor
	Setup - Visual Studio
	"Hello world" - run and compile
	Built-in help

	Notes on syntax
	Using words
	Evaluation
	Some pitfalls of Red learning

	Console input and output
	Running code
	Stopping code
	Datatypes
	Hash!, vector! and map!
	Other datatypes
	Datatype conversion

	Accessing and formatting data
	Math and logic
	Other bases
	Cryptography
	Blocks & Series
	Series navigation
	Series "getters"
	Series "changers"

	Copying
	Looping
	Branching
	String and text manipulation
	Printing special characters

	Time and timing
	Error handling
	Files
	Writing to files
	Reading files

	Functions
	Objects
	Reactive programming
	OS interface
	I/O
	HTTP

	GUI
	Container settings
	Layout commands
	Faces
	Events and Actors
	Event! mouse position and key pressed
	Advanced topics
	Rich text
	Create views progammatically

	Parse
	Debugging Parse
	Matching
	Ordered choices
	Repetition and Matching Loops
	Storing input
	Modifying input
	Control flow
	Parse usage - Validate inputs
	Parse usage - Extract data
	Parse usage - Manipulating text
	Parse links

	Draw
	Line properties
	Color, gradients and patterns
	2D transforms
	Shape sub-dialect
	Programmatic drawing and Animation

	What is in "system"
	Appendix I -While we wait for serial port...
	Appendix II -While we wait for full CGI..
	Installing and configuring Cheyenne
	RSP -"Hello world"
	RSP -Request and Response
	CGI -"Hello world"
	CGI -Processing web forms
	CGI using Red

	Appendix III -MQTT using Red

